Skip to main content

Advertisement

Log in

High-pressure structural studies of Li x La1/3NbO3 (x = 1/6, 1/3, 1/2, 2/3)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure behavior of Li x La1/3NbO3 (x = 1/6, 1/3, 1/2, 2/3) perovskites where Li cations were substituted for the existing vacancies was studied using synchrotron X-ray diffraction. It was shown that all these materials undergo irreversible pressure-induced amorphization around 14.5 GPa regardless of the Li concentration. The Li-inserted materials were found to exhibit a standard pressure response (bulk modulus pressure derivative B 0′ ~4) when in the crystalline phase, whereas La1/3NbO3 shows a linear volume contraction versus pressure, i.e., B 0′ ~(−1). These results suggest that the structural collapse is not a consequence of cation disorder resulting from the Nb atoms (B-site) migrating to the A-site vacancies. The observed pressure response can be understood by increased occupancy of the A-sites opposing the tilting of the NbO6 octahedra. The pressure evolution of the Nb oxidation state is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belous AG, Didukh IR, Novosadova EB, Pashkova EV, Khomenko BS (1990) Izv Akad Nauk SSSR. Neorg Mater 26:1294

    Google Scholar 

  • Bouvier P, Crichton WA, Boulova M, Lucazeau G (2002) X-ray diffraction study of WO3 at high pressure. J Phys Condens Matter 14:6605. doi:10.1088/0953-8984/14/26/301

    Article  Google Scholar 

  • Brese NE, O’Keefe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197. doi:10.1107/S0108768190011041

    Article  Google Scholar 

  • Dilanian RA, Yamamoto A, Izumi F, Kamiyama T (2000) Crystal structures and resistivities of La1/3LixNbO3. Mol Cryst Liquid Cryst Sci Technol Sect A 341:225–230. doi:10.1080/10587250008026144

    Article  Google Scholar 

  • Galasso FS (1969) Structure, properties and preparation of perovskite-type compounds. Pergamon, Oxford

    Google Scholar 

  • Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G (2010) High-pressure investigation of CaTiO3 up to 60 GPa using X-ray diffraction and Raman spectroscopy. Phys Rev B 82:134101. doi:10.1103/PhysRevB.82.134101

    Article  Google Scholar 

  • Guyot F, Reynard B (1992) Pressure-induced structural modifications and amorphization in olivine compounds. Chem Geol 96:411–420. doi:10.1016/0009-2541(92)90069-H

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised mage or two-theta scan. High Press Res 14:235–248. doi:10.1080/08957959608201408

    Article  Google Scholar 

  • Howard CJ, Zhang Z (2003) Structures and phase transition in the layered perovskite La0.6Sr0.1TiO3: a new orthorhombic structure solved from high-resolution diffraction in combination with group theoretical analysis. J Phys Condens Matter 15:4543. doi:10.1088/0953-8984/15/26/304

    Article  Google Scholar 

  • Howard CJ, Zhang Z (2004) Structure for perovskites with layered ordering of A-site cations. Acta Cryst B60:249–251. doi:10.1107/S0108768104003714

    Article  Google Scholar 

  • Kawakami Y, Ikuta H, Wakihara MJ (1998) Ionic conduction of lithium for Perovskite-type compounds, Li x La(1 − x)/3NbO3 and (Li0.25La0.25)1 − xSr0.5xNbO3. Solid State Electrochem 2:206–210. doi:10.1007/s100080050089

    Article  Google Scholar 

  • Kennedy BJ, Howard CJ, Kubota Y, Kato K (2004) Phase transition behaviour in the A-site deficient perovskite oxide La1/3NbO3. J Solid State Chem 177:4552–4556. doi:10.1016/j.jssc.2004.08.047

    Article  Google Scholar 

  • Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder Bay

    Google Scholar 

  • Mumme WG, Grey IE, Roth RS, Vanderah TA (2007) Contrasting oxide crystal chemistry of Nb and Ta: the structures of the hexagonal bronzes BaTa2O6 and Ba0.93Nb2.03O6. J Solid State Chem 180:2429–2436. doi:10.1016/j.jssc.2007.06.014

    Article  Google Scholar 

  • Nadiri A, Le Flem G, Delmas C (1988) Lithium intercalation in Ln1/3NbO3 perovskite-type phases (Ln = La, Nd). J Solid State Chem 73(2):338–347. doi:10.1016/0022-4596(88)90118-1

    Article  Google Scholar 

  • Nakayama M, Imaki K, Ikuta H, Uchimoto Y, Wakihara M (2002) Electrochemical lithium insertion for perovskite oxides of LiyLa(1 − y)/3NbO3 (y = 0, 0.1, 0.25). J Phys Chem B 106:6437–6441. doi:10.1021/jp0258659

    Article  Google Scholar 

  • Nakayama M, Ikuta H, Uchimoto Y, Wakihara M, Terada Y, Miyanaga Y, Watanabe I (2003a) Changes in local structure during electrochemical Li insertion into A-site deficient perovskite oxides, La1/3NbO3. J Phys Chem B 107:10715–10721. doi:10.1021/jp034262+

    Article  Google Scholar 

  • Nakayama M, Imaki K, Ra W, Ikuta H, Uchimoto Y, Wakihra M (2003b) Using X-ray absorption spectroscopy to measure changes of electronic structure accompanying lithium insertion into the perovskite type oxides. Chem Mater 15:1728–1733. doi:10.1021/cm020741u

    Article  Google Scholar 

  • Nakayama M, Wakihara M, Kobayashi Y, Miyashiro H (2005) Investigation on the arrangement of lithium ions in Li x La1/3NbO3 with perovskite structure. J Phys Chem B 109:14648–14653. doi:10.1021/jp052142r

    Article  Google Scholar 

  • Nakayama M, Shirakawa J, Wakihara M (2006) Ab initio density functional study on changes in local structure in perovskite compound, LixLa1/3NbO3. Solid State Ion 177:1259–1266. doi:10.1016/j.ssi.2006.06.028

    Article  Google Scholar 

  • Navrotsky A, Weidner DJ (1989) Perovskite: a structure of great interest to geophysics and material science. American Geophysical Union, Washington

  • Noked O, Yakovlev S, Greenberg Y, Garbarino G, Shuker R, Avdeev M, Sterer E (2011) Pressure-induced amorphization of La1/3NbO3. J Non-cryst Solids 357:3334–3337. doi:10.1016/j.jnoncrysol.2011.05.030

    Article  Google Scholar 

  • Noked O, Melchior A, Shuker R, Livneh T, Steininger R, Kennedy BJ, Sterer E (2013a) Pressure-induced amorphization of La1/3TaO3. J Solid State Chem 202:38–42. doi:10.1016/j.jssc.2013.03.007

    Article  Google Scholar 

  • Noked O, Melchior A, Shuker R, Steininger R, Kennedy BJ, Sterer E (2013) Pressure-induced amorphization of A-site-deficient double perovskite Ln1/3MO3 (Ln = Pr, Nd, M = Nb, Ta). Phys Chem Min 1–9. doi:10.1007/s00269-013-0622-4

  • Rao CNR, Raveau B (1998) Transition metal oxides, 2nd edn. VCH, New York

    Google Scholar 

  • Rodrí-guez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69. doi:10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  • Scrosati B (1995) Challenge of portable power. Nature 373:557–558. doi:10.1038/373557a0

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  • Sterer E, Pasternak MP, Taylor RD (1990) A multipurpose miniature diamond anvil cell. Rev Sci Instrum 61:1117. doi:10.1063/1.1141433

    Article  Google Scholar 

  • Tejuco LG, Fierro JLG (1993) Properties and applications of perovskite-type oxides. Marcel Dekker, New York

    Google Scholar 

  • Trzesowska A, Kruszynski R, Tadeusz J, Bartczak J (2004) New bond-valence parameters for lanthanides. Acta Cryst B60:174–178. doi:10.1107/S0108768104002678

    Article  Google Scholar 

  • Vinet P, Rose JH, Ferrante J, Smith JR (1989) Universal features of the equation of state of solids. J Phys Condens Matter 1:1941. doi:10.1088/0953-8984/1/11/002

    Article  Google Scholar 

  • Wakihara M, Guohua L, Ikuta H (1998) A review of positive electrode materials for lithium-ion batteries. In: Wakihara M, Yamamoto O (eds) Lithium ion batteries, chap 2. Kodansha, Tokyo

  • Williams Q, Knittle E, Reichlin R, Martin S, Jeanloz R (1990) Structural and electronic properties of Fe2SiO4–fayalite at ultrahigh pressures: amorphization and gap closure. J Geophys Res Solid Earth 95:21549–21563. doi:10.1029/JB095iB13p21549

    Article  Google Scholar 

  • Woodward PM (1997) Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Cryst B53:44–66. doi:10.1107/S0108768196012050

    Article  Google Scholar 

Download references

Acknowledgments

Portions of this research were carried out at beamline P02.2 of the light source PETRA III at DESY, a member of the Helmholtz Association (HGF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Noked.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noked, O., Melchior, A., Shuker, R. et al. High-pressure structural studies of Li x La1/3NbO3 (x = 1/6, 1/3, 1/2, 2/3). Phys Chem Minerals 41, 333–340 (2014). https://doi.org/10.1007/s00269-013-0652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0652-y

Keywords

Navigation