Skip to main content
Log in

Mössbauer milliprobe studies of small mineral samples with a silicon drift detector

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Analysis of 57Fe transmission Mössbauer spectra collected on a system where the proportional counter has been replaced with a silicon drift detector (SDD) to test milliprobing of mineral samples is described. In the region of the 14.4 keV Mössbauer line the detector has about 70% efficiency and is capable of delivering spectroscopic information with a high energy resolution and high counting rate. Satisfactory results are obtained from a phase analysis of mixtures of olivine and ilmenite in the proportion 97:3, 99:1 wt%, where in the latter case 2.4 μg of Fe3+ in the form of hematite was found in the ilmenite. New perovskite-type minerals (Pb1.33Ba0.67Fe2O5, Pb1.33Sr0.67Fe2O5 and Pb1.33Ba0.33Sr0.33Fe2O5), synthesised by a combustion method, were studied by X-ray diffraction and Mössbauer spectroscopy as well. The advantage of the system with SDD compared to a conventional Mössbauer spectrometer equipped with a proportional counter as a detector is demonstrated for the perovskite samples. The Mössbauer set-up with the silicon drift detector may be successfully used for a wide range of materials containing a negligible amount of iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bozhilov K, Dobrzhinetskaya LF, Green II HW (1999) Clinoenstatite in Alpe Arami Peridotite: additional evidence of very high pressure. Science 284:128–132

    Article  Google Scholar 

  • Debrunner P (1967) In: Gruverman IJ (ed) Mössbauer effect methodology. Mir, Moscow, pp 104–112 (in Russian)

  • Dobrzhinetskaya LF, Green II HW, Wang S (1996) Alpe-Arami: a peridotite massif from depth of more than 300 kilometers. Science 271:1841–1845

    Article  Google Scholar 

  • Dyar M, Schaefer M (2004) Mössbauer spectroscopy on the surface of Mars: constraints and expectations. Earth Planet Sci Lett 218:243–259

    Article  Google Scholar 

  • Eggert T, Boslau O, Goldstrass P, Kemmer J (2004) Silicon drift detectors with enlarged sensitive areas. XRay Spectrom 33:246–252

    Article  Google Scholar 

  • Haggerty SE, Sautter V (1990) Ultradeep (greater than 300 kilometers), ultramafic mantle xenoliths. Science 248:993–996

    Article  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Bilnova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Miner Petrol 140:734–753

    Google Scholar 

  • Kovacheva D, Gadjov H, Petrov K, Mandal S, Lazarraga MG, Pascual L, Amarilla JM, Rojas RM, Herrero P, Rojo JM (2002) Synthesizing nanocrystalline LiMn2O4 by a combustion route. J Mater Chem 12:1184–1188

    Article  Google Scholar 

  • Lauterbach S, McCammon CA, van Aken P, Langenhorst F, Seifert F (2000) Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si, Al)O3 perovskite: a highly oxidised component of the lower mantle. Contrib Miner Petrol 138:17–26

    Article  Google Scholar 

  • Lechner P, Fiorini C, Hartmann R, Kemmer J, Krause N, Leutenegger P, Longoni A, Soltau H, Stötter D, Strüder L, Weber U (2001) Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. Nucl Instr Meth A 458:281–287

    Article  Google Scholar 

  • Lechner P, Pahlke A, Soltau H (2004) Novel high-resolution silicon drift detectors. XRay Spectrom 33:256–261

    Article  Google Scholar 

  • McCammon CA (1994) Mössbauer milliprobe: practical considerations. Hyper Inter 92:1235–1239

    Article  Google Scholar 

  • McCammon CA (2005) The paradox of mantle redox. Science 308:807–808

    Article  Google Scholar 

  • McCammon CA, Ross NL (2003) Crystal chemistry of ferric iron in (Mg,Fe)(Si,Al)O3 majorite with implications for the transition zone. Phys Chem Miner 30:206–216

    Article  Google Scholar 

  • McCammon CA, Kopylova MG (2004) A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib Miner Petrol 148:55–68

    Article  Google Scholar 

  • McCammon CA, Chaskar V, Richards GG (1991) A technique for spatially resolved Mössbauer spectroscopy applied to quenched metallurgical slags. Meas Sci Technol 2:657–662

    Article  Google Scholar 

  • McCammon CA, Hutchison M, Harris JW (1997) Ferric iron content of mineral inclusions in diamonds from São Luiz: a view into the lower mantle. Science 278:434–436

    Article  Google Scholar 

  • McCammon CA, Frost DJ, Smyth JR, Laustsen HMS, Kawamoto T, Ross NL, van Aken PA (2004a) Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Phys Earth Planet Int 143–144:157–169

    Article  Google Scholar 

  • McCammon CA, Stachel T, Harris JW (2004b) Iron oxidation state in lower mantle mineral assemblages: II. Inclusions in diamonds from Kankan, Guinea. Earth Planet Sci Lett 222:423–434

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Oshishi Y (2004) Poet-perovskite phase transition in MgSiO3. Science 304:855–857

    Article  Google Scholar 

  • Pawlowski Z, Cudny W (1978) High count rate multiwire proportional counters for Mössbauer spectroscopy. Nucl Instr Meth A 157:287–293

    Article  Google Scholar 

  • Raynova-Schwarten V, Massa W, Babel D (1997) Ein neues Bleistrontiumferrat (111): Die Kristallstruktur der Phase Pb4Sr2Fe60I5. Z Anorg Allg Chem 623:1048–1054

    Article  Google Scholar 

  • Spengler D, van Roermund HLM, Drury MR, Ottolini L, Mason PRD, Davies GR (2006) Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature 440:913–917

    Article  Google Scholar 

  • van Roermund HLM, Drury MR (1998) Ultra-high pressure (P>6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from >185 km depth. Terra Nova 10:295–301

    Article  Google Scholar 

  • Ye K, Cong B, Ye D (2000) The possible subduction of continental material to depths greater than 200 km. Nature 407:734–736

    Article  Google Scholar 

  • Zhang RY, Shu JF, Mao HK, Liou JG (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China. Am Mineral 84:564–569

    Google Scholar 

Download references

Acknowledgments

This work is a result of Bulgaria–USA international collaboration (NSF support: INT-EAR 0329596 to LD and HWG). Financial support provided by the Bulgarian Ministry of Education through Grant CECOA is gratefully acknowledged. D. K. and P. T. thank the National Science Fund of Bulgaria (Contract no. BM-03/2006) for financial support. We thank Dr. Kristina Kolcheva and Prof. Georgi Kirov (University of Sofia) for providing us with the ilmenite sample and for their useful consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todor Ruskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruskov, T., Spirov, I., Green, H.W. et al. Mössbauer milliprobe studies of small mineral samples with a silicon drift detector. Phys Chem Minerals 35, 485–491 (2008). https://doi.org/10.1007/s00269-008-0243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0243-5

Keywords

Navigation