Skip to main content
Log in

Experimental multipole-refined and theoretical charge density study of LiGaSi2O6 clinopyroxene at ambient conditions

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The synthetic LiGaSi2O6 clinopyroxene is monoclinic C2/c at room-T. Its experimental electron density, ρ(r), has been derived starting from accurate room-T single-crystal diffraction data. Topological analysis confirms an intermediate ionic-covalent character for Si–O bonding, as found by previous electron-density studies on other silicates such as diopside, coesite and stishovite. The non-bridging Si–O bonds have more covalent character than the bridging ones. The Ga–O bonds have different bonding characters, the Ga–O2 bond being more covalent than the two Ga–O1 bonds. Li–O bonds are classified as pure closed-shell ionic interactions. Similar to spodumene (LiAlSi2O6), Li has sixfold coordination, but the bond critical points associated to the two longest bonds are characterized by very low electron density values. Similar to what previously found in spodumene and diopside, O···O interactions were detected from the topological analysis of ρ(r), and indicate a cooperative interaction among the lone pairs of neighbouring oxygen atoms. In particular, this kind of interaction has been obtained for the O1···O1 edge shared between two Ga octahedra. Integration over the atomic basins gives net charges of −1.39(10), 2.82(10), 1.91(10) and 0.82(8) e for O (averaged), Si, Ga and Li atoms, respectively. Periodic Hartree–Fock and DFT calculations confirm the results obtained by multipole refinement of the experimental data. Moreover, the theoretical topological properties of the electron density distribution on the Si2O6 group are very similar to those calculated for spodumene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramov YuA (1997) On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr A 53:264–272

    Article  Google Scholar 

  • Allen LC (1989) Electronegativity is the average one-electron energy of the valence–shell electrons in ground–state free atoms. J Am Chem Soc 111:9003–9014

    Article  Google Scholar 

  • Bader RFW, Essen H (1984) The characterization of atomic interactions. J Chem Phys 80(5):1943–1960

    Article  Google Scholar 

  • Bader RFW (1994) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  • Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem 102A:7314–7323

    Google Scholar 

  • Becker P, Coppens P (1974a) Extinction within the limit of validity of the Darwin transfer equations. I. General formalisms for primary and secondary extinction and their application to spherical crystals. Acta Crystallogr A 30:129–147

    Article  Google Scholar 

  • Becker P, Coppens P (1974b) Extinction within the limit of validity of the Darwin transfer equations. II. Refinement of extinction in spherical crystals of SrF2 and LiF. Acta Crystallogr A 30:148–153

    Article  Google Scholar 

  • Bianchi R, Forni A, Oberti R (2005) Multipole-refined charge density study of diopside at ambient conditions. Phys Chem Miner 32:638–645

    Article  Google Scholar 

  • Bianchi R, Forni A (2005) VALTOPO: a program for the determination of atomic and molecular properties from experimental electron densities. J Appl Crystallogr 38:232–236

    Article  Google Scholar 

  • Blessing RH, Coppens P, Becker P (1974) Computer analysis of step scanned X-ray data. J Appl Crystallogr 7:488–492

    Article  Google Scholar 

  • Clementi E, Roetti C (1974) Roothan-Hartree–Fock atomic wavefunctions. At Data Nucl Data Tables 14:177–478

    Article  Google Scholar 

  • Cremer D, Kraka E (1984) A description of the chemical-bond in terms of local properties of electron-density and energy. Croat Chem Acta 57(6):1259–1281

    Google Scholar 

  • Downs RT (2003) Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density. Am Mineral 88:556–566

    Google Scholar 

  • Downs RT, Gibbs GV, Boisen MB Jr, Rosso KM (2002) A comparison of bond critical properties from procrystal and ab initio model representations of the electron density distributions of minerals. Phys Chem Miner 29:369–385

    Article  Google Scholar 

  • Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H...F–Y systems. J Chem Phys 117:5529–5542

    Article  Google Scholar 

  • Fukunaga O, Yamaoka S, Endo T, Akaishi M, Kanda H (1979) Modification of belt-like high pressure apparatus. High press Sci Technol 1:846–852

    Google Scholar 

  • Gatti C (1999) TOPOND–98: an electron density topological program for systems periodic in N (N = 0–3) dimensions, User’s Manual, CNR-CSRSRC, Milan. http://www.istm.cnr.it/∼gatti/ TOPOND.ppt

  • Gatti C (2005) Chemical bonding in crystals: new directions. Z Kristallogr 220:399–457

    Article  Google Scholar 

  • Gervasio G, Bianchi R, Marabello D (2004) About the topological classification of the metal-metal bond. Chem Phys Lett 387:481–484

    Article  Google Scholar 

  • Gibbs GV, Whitten AE, Spackman MA, Stimpfl M, Downs RT, Carducci MD (2003) An exploration of theoretical and experimental electron density distributions and SiO bonded interactions for the silica polymorph coesite. J Phys Chem B 107:12996–13006

    Article  Google Scholar 

  • Gibbs GV, Cox DF, Crawford TD, Rosso KM, Ross NL, Downs RT (2006a) Classification of metal-oxide bonded interactions based on local potential- and kinetic-energy densities. J Chem Phys 124:084704

    Article  Google Scholar 

  • Gibbs GV, Spackman MA, Jayatilaka D, Rosso KM, Cox DF (2006b) Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions. J Phys Chem A 110:12259–12266

    Article  Google Scholar 

  • Gibbs GV, Jayatilaka D, Spackman MA, Cox DF, Rosso KM (2006c) Si–O bonded interactions in silicate crystals and molecules: a comparison. J Chem Phys A 110:12678–12683

    Article  Google Scholar 

  • Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) Self-consistent molecular orbital methods. IV. Use of the Gaussian expansion of slater-type orbitals. Extension to second-row molecules. J Chem Phys 51:2769–2773

    Article  Google Scholar 

  • International Tables for Crystallography (1995) Interpretation of diffracted intensities. In: Wilson AJC (ed) vol C. Kluwer, Dordrecht

  • Kirfel A, Krane HG, Blaha P, Schwarz K, Lippmann T (2001) Electron-density distribution in stishovite, SiO2: a new high-energy synchrotron-radiation study. Acta Crystallogr A 57:663–677

    Article  Google Scholar 

  • Koga T, Saito M, Hoffmeyer RE, Thakkar AJ (1994) Contracted Gaussian basis sets for sodium through to argon. J Mol Struct (Theochem) 306:249–260

    Article  Google Scholar 

  • Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101:1583–1627

    Article  Google Scholar 

  • Lehmann MS, Larsen FK (1974) A method for location of the peaks in step-scan-measured Bragg reflections. Acta Crystallogr A 30:580–584

    Article  Google Scholar 

  • Luaña V, Costales A, Mori–Sánchez P, Pendás AM (2003) Ions in crystals: the topology of the electron density in ionic materials. 4. The danburite (CaB2Si2O8) case and the occurrence of oxide–oxide bond paths in crystals. J Phys Chem B 107:4912–4921

    Article  Google Scholar 

  • Nestola F, Rotiroti N, Bruno M, Tribaudino M, van Smaalen S, Ohashi H, Redhammer GJ (2007) Low-temperature behavior of NaGaSi2O6. Am Mineral 92:560–569

    Article  Google Scholar 

  • North ACT, Phillips DC, Mathews FS (1968) A semi-empirical method of absorption correction. Acta Crystallogr A 24:351–359

    Article  Google Scholar 

  • Ohashi H, Fujita T, Osawa T (1983) The crystal structure of NaGaSi2O6 pyroxene. J Min Petrol Econ Geol 78:159–163

    Google Scholar 

  • Ohashi H, Osawa T, Sato A, Onoda Y (1995a) Structure and solid-state Gallium-69 NMR spectra of LiGaSi2O6. J Min Petrol Econ Geol 90:327–332

    Article  Google Scholar 

  • Ohashi H, Osawa T, Sato A (1995b) Low-density form of NaGaSi2O6. Acta Crystallogr C 51:2476–2477

    Article  Google Scholar 

  • Ohashi H (2003) Solid-state Gallium-69 NMR spectra of LiGaSi2O6 clinopyroxene at low and high temperatures. In: Ohashi H (ed) X-ray study on Si-O bonding. Publishing Service Center, Tokyo, Maruzen, pp 167–169 ISBN 4-89630-094-7

    Google Scholar 

  • Pandey R, Jaffe JE, Harrison NM (1994) Ab initio study of high pressure phase transition in GaN. J Phys Chem Solids 55:1357–1361

    Article  Google Scholar 

  • Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca, NY, p 429

    Google Scholar 

  • Pietro WJ, Levi BA, Hehre WJ, Stewart RF (1980) Molecular orbital theory of the properties of inorganic and organometallic compounds. I. STO-NG basis sets for third-row main-group elements. Inorg Chem 19:2225–2229

    Article  Google Scholar 

  • Poirier R, Kari R, Csizmadia IG (1985) Handbook of Gaussian basis sets. Elsevier, Amsterdam, p 477

    Google Scholar 

  • Prencipe M, Tribaudino M, Nestola F (2003) Charge-density analysis of spodumene (LiAlSi2O6), from ab inbitio Hartree-Fock calculations. Phys Chem Mineral 30:606–614

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2004a) Structural variation and crystal chemistry of LiMe3+Si2O6 clinopyroxenes Me3+ = Al, Ga, Cr, V, Fe, Sc and In. Z Kristallogr 219:278–294

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2004b) Structural changes upon the dependent C2/cP21/c phase transition in LiMe3+Si2O6 clinopyroxenes, Me = Cr, Ga, Fe, V, Sc and In. Z Kristallogr 219:585–605

    Article  Google Scholar 

  • Sasaki S, Fujino K, Takéuchi Y, Sadanaga R (1980) On the estimation of atomic charges by the X-ray method for some oxides and silicates. Acta Crystallogr A 36:904–915

    Article  Google Scholar 

  • Sato A, Osawa T, Ohashi H (1994) LiGaSi2O6. Acta Crystallogr C 50:487–488

    Article  Google Scholar 

  • Saunders VR, Dovesi R, Roetti C, Causà M, Harrison NM, Orlando R, Zicovich–Wilson CM (1998) CRYSTAL98 user’s manual. University of Torino, Torino

    Google Scholar 

  • Thakkar AJ, Koga T, Saito M, Hoffmeyer RE (1993) Double and quadruple zeta contracted gaussian basis sets for hydrogen through neon. Int J Quantum Chem Quantum Chem Symp 27:343–354

    Article  Google Scholar 

  • Thompson JB Jr (1970) Geometrical possibilities for amphiboles structures: model biopyriboles. Am Mineral 55:292–293

    Google Scholar 

  • Tsirelson VG, Evdokimova OA, Belokoneva EL, Urusov VS (1990) Electron density distribution and bonding in silicates. Phys Chem Mineral 17:275–292

    Google Scholar 

Download references

Acknowledgement

This work was supported by funding from CNR to IGG-Unità di Pavia through the project TA01.04.02 and Italian MIUR-PRIN 2005 project “From minerals to materials: crystal-chemistry, microstructures, modularity, modulations”. R. B. and A. F. wish to thank Professor G. V. Gibbs for profitable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Forni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information (DOC 925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, R., Forni, A., Cámara, F. et al. Experimental multipole-refined and theoretical charge density study of LiGaSi2O6 clinopyroxene at ambient conditions. Phys Chem Minerals 34, 519–527 (2007). https://doi.org/10.1007/s00269-007-0167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0167-5

Keywords

Navigation