Skip to main content

Setting Targets for Wetland Restoration to Mitigate Climate Change Effects on Watershed Hydrology

Abstract

How much wetland we should protect or restore is not a simple question, such that conservation targets are often set according to political agendas, then standardized globally. However, given their key regulating hydrological functions, wetlands represent nature-based solutions to the anticipated, exacerbating effect of climate change on drought and flood events, which will vary at the regional scale. Here, we propose a science-based approach to establishing regional wetland restoration targets centered on their hydrological functions, using a case study on several sub-watersheds of a northern temperate basin in south-eastern Canada. We posit that restoration targets should minimally mitigate the negative effects of climate change on watershed hydrology, namely peak and low flows. We used a semi-distributed hydrological model, HYDROTEL, to perform a hydroclimatic assessment, including 47 climate projections over the 1979–2099 period, to test the effect of wetland restoration scenarios on peak and low flows. The results showed that hydrological responses to climate change varied among sub-watersheds (even at the scale of a relatively small region), and that, to mitigate these changes, increases in wetland coverage should be between 20% and up to 150%. At low restoration levels, increasing wetland coverage was more effective in attenuating floods than alleviating droughts. This study indicates that a no-net-loss policy is insufficient to maintain current hydrological cycles in the face of climate change; rather, a ‘net gain’ in wetland cover is needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data will be made available via the Dryad Digital Repository.

References

  • Accatino F, Creed IF, Weber M (2018) Landscape consequences of aggregation rules for functional equivalence in compensatory mitigation programs. Conserv Biol 32:694–705

    Article  Google Scholar 

  • Ameli AA, Creed IF (2019) Does wetland location matter when managing wetlands for watershed‐scale flood and drought resilience? JAWRA J Am Water Resour Assoc 55:529–542

    Article  Google Scholar 

  • Arneth A, Olsson L, Cowie A, Erb K-H, Hurlbert M, Kurz WA, Mirzabaev A, Rounsevell MD (2021) Restoring degraded lands. Annu Rev Environ Resour 46:569–599

    Article  Google Scholar 

  • Asadzadeh M, Tolson BA (2009) A new multi-objective algorithm, pareto archived DDS

  • Audet G, Bérubé D, Ducruc J-P, Gerardin V (1997) Les cartes écologiques du bassin versant de la rivière Saint-Charles. Notice explicative. Direction de la conservation et du patrimoine écologique - Ministère de l’Environnement et de la Faune, Québec

    Google Scholar 

  • Benayas JMR, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124

    Article  CAS  Google Scholar 

  • Blanchette M, Rousseau AN, Foulon E, Savary S, Poulin M (2019) What would have been the impacts of wetlands on low flow support and high flow attenuation under steady state land cover conditions? J Environ Manag 234:448–457

    Article  Google Scholar 

  • Blanchette M, Rousseau AN, Savary S, Foulon E (2022) Are spatial distribution and aggregation of wetlands reliable indicators of stream flow mitigation? J Hydrol 608

  • Bouda M, Rousseau AN, Konan B, Gagnon P, Gumiere SJ (2012) Bayesian uncertainty analysis of the distributed hydrological model HYDROTEL. J Hydrologic Eng 17:1021–1032

    Article  Google Scholar 

  • Bouda M, Rousseau AN, Gumiere SJ, Gagnon P, Konan B, Moussa R (2014) Implementation of an automatic calibration procedure for HYDROTEL based on prior OAT sensitivity and complementary identifiability analysis. Hydrological Process 28:3947–3961

    Article  Google Scholar 

  • Boyer C, Chaumont D, Chartier I, Roy AG (2010) Impact of climate change on the hydrology of St. Lawrence tributaries. J Hydrol 384:65–83

    Article  Google Scholar 

  • Brodeur C, Brassard D, Dionne N, Laberge V, Labrecque R, Trépanier J, Turmel P (2012) Portrait des bassins versants de la Capitale Organisme des bassins versants de la Capitale, Québec

    Google Scholar 

  • Bullock A, Acreman M (2003) The role of wetlands in the hydrological cycle. Hydrol Earth Syst Sci 7:358–389

    Article  Google Scholar 

  • Burt T, Bates P, Stewart M, Claxton A, Anderson M, Price D (2002) Water table fluctuations within the floodplain of the River Severn, England. J Hydrol 262:1–20

    Article  Google Scholar 

  • CBD (2016) CBD (United Nations Convention on Biological Diversity) (2016) Ecosystem restoration: short‐term action plan. CBD/COP/DEC/XIII/5, 10 December 2016

  • Chokmani K, Ouarda TBMJ, Hamilton S, Ghedira MH, Gingras H (2008) Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J Hydrol 349:383–396

    Article  Google Scholar 

  • Cimon-Morin J, Poulin M (2018) Setting conservation priorities in cities: approaches, targets and planning units adapted to wetland biodiversity and ecosystem services. Landsc Ecol 33:1975–1995

    Article  Google Scholar 

  • Cimon-Morin J, Darveau M, Poulin M (2013) Fostering synergies between ecosystem services and biodiversity in conservation planning: a review. Biol Conserv 166:144–154

    Article  Google Scholar 

  • City of Quebec (2017) Ville de Québec - Inondations - Mur anti-crue de la rivière Lorette.

  • Cohen MJ, Creed IF, Alexander L, Basu NB, Calhoun AJ, Craft C, D’Amico E, DeKeyser E, Fowler L, Golden HE (2016) Do geographically isolated wetlands influence landscape functions? Proc Natl Acad Sci 113:1978–1986

    Article  CAS  Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65:934–941

    Article  Google Scholar 

  • Dehotin J, Braud I (2008) Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrol Earth Syst Sci 12:769–796

    Article  Google Scholar 

  • Dionne FL, Ciobanas AI, Rousseau AN (2008) Validation d’un modèle de rayonnement net et comparaison de l’équation d’évaporation d’Hydro-Québec avec le bilan d’énergie thermique de surface. Institut national de la recherche scientifique – Centre Eau Terre Environnement, Québec

  • Dixon M, Loh J, Davidson N, Beltrame C, Freeman R, Walpole M (2016) Tracking global change in ecosystem area: The Wetland Extent Trends index. Biol Conserv 193:27–35

    Article  Google Scholar 

  • Evenson GR, Golden HE, Lane CR, McLaughlin DL, D’Amico E (2018) Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecol Appl 28:953–966

    Article  Google Scholar 

  • Fortin J-P, Turcotte R, Massicotte S, Moussa R, Fitzback J, Villeneuve J-P (2001) Distributed watershed model compatible with remote sensing and GIS data. I: Description of model. J Hydrologic Eng 6:91–99

    Article  Google Scholar 

  • Forzieri G, Feyen L, Rojas R, Flörke M, Wimmer F, Bianchi A (2014) Ensemble projections of future streamflow droughts in Europe. Hydrol Earth Syst Sci 18:85–108

    Article  Google Scholar 

  • Fossey M, Rousseau AN (2016) Assessing the long-term hydrological services provided by wetlands under changing climate conditions: a case study approach of a Canadian watershed. J Hydrol 541:1287–1302

    Article  CAS  Google Scholar 

  • Fossey M, Rousseau AN, Savary S (2016) Assessment of the impact of spatio‐temporal attributes of wetlands on stream flows using a hydrological modelling framework: a theoretical case study of a watershed under temperate climatic conditions. Hydrological Process 30:1768–1781

    Article  Google Scholar 

  • Fossey M, Rousseau AN, Bensalma F, Savary S, Royer A (2015) Integrating isolated and riparian wetland modules in the PHYSITEL/HYDROTEL modelling platform: model performance and diagnosis. Hydrological Process 29:4683–4702

    Article  Google Scholar 

  • Golden HE, Lane CR, Rajib A, Wu Q (2021) Improving global flood and drought predictions: integrating non-floodplain wetlands into watershed hydrologic models. Environ Res Lett 16:091002

    Article  Google Scholar 

  • Golden HE, Lane CR, Amatya DM, Bandilla KW, Raanan Kiperwas H, Knightes CD, Ssegane H (2014) Hydrologic connectivity between geographically isolated wetlands and surface water systems: a review of select modeling methods. Environ Model Softw 53:190–206

    Article  Google Scholar 

  • Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol 377:80–91

    Article  Google Scholar 

  • Hammond MJ, Chen AS, Djordjević S, Butler D, Mark O (2015) Urban flood impact assessment: a state-of-the-art review. Urban Water J 12:14–29

    Article  Google Scholar 

  • Hiers JK, Jackson ST, Hobbs RJ, Bernhardt ES, Valentine LE (2016) Opinion the precision problem in conservation and restoration. Trends Ecol Evolution 31:820–830

    Article  Google Scholar 

  • Huang S, Krysanova V, Hattermann FF (2013) Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological model. Acta Geophysica 61:151–193

    Article  Google Scholar 

  • Isabelle PE (2014) Simplification de l’estimation des taux d’évapotranspiration sur les tourbières boréales par la quasi-neutralité de l’atmosphère. Institut national de la recherche scientifique, Québec

  • Kundzewicz ZW, Mata L, Arnell NW, Döll P, Jimenez B, Miller K, Oki T, Şen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrological Sci J 53:3–10

    Article  Google Scholar 

  • Liu YB, Yang WH, Wang XX (2008) Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a watershed scale. Hydrological Process 22:2901–2915

    Article  Google Scholar 

  • Marx A, Kumar R, Thober S, Rakovec O, Wanders N, Zink M, Wood EF, Pan M, Sheffield J, Samaniego L (2018) Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 C. Hydrol Earth Syst Sci 22:1017–1032

    Article  Google Scholar 

  • Matott SL (2017) OSTRICH – an optimization software toolkit for research involving computational heuristics documentation and user’s guide version 17.12.19. University at Buffalo Center for Computational Research

  • Ministry of the Environment and the Fight Against Climate Change. 2021. Daily hydrometric data

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands. John Wiley & Sons

  • Moreno-Mateos D, Power ME, Comín FA, Yockteng R (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10:e1001247

    Article  CAS  Google Scholar 

  • Moreno‐Mateos D, Meli P, Vara‐Rodríguez MI, Aronson J (2015) Ecosystem response to interventions: lessons from restored and created wetland ecosystems. J Appl Ecol 52:1528–1537

    Article  Google Scholar 

  • Natural Resources Canada (2013) Digital elevation model of Canada

  • Neitsch S, Arnold J, Srinivasan R (2002) Pesticides fate and transport predicted by the soil and water assessment tool (SWAT). Atrazine, Metolachlor and Trifluralin in the Sugar Creek Watershed: BRC Report 3

  • Noël P, Rousseau AN, Paniconi C, Nadeau DF (2014) Algorithm for delineating and extracting hillslopes and hillslope width functions from gridded elevation data. J Hydrologic Eng 19:366–374

    Article  Google Scholar 

  • Noss RF, Dobson AP, Baldwin R, Beier P, Davis CR, Dellasala DA, Francis J, Locke H, Nowak K, Lopez R (2012) Bolder thinking for conservation. Conserv Biol 26:1–4

    Article  Google Scholar 

  • Orlandini S, Moretti G, Franchini M, Aldighieri B, Testa B (2003) Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models. Water Resources Research 39(6). https://doi.org/10.1029/2002WR001639

  • Oudin L, Andréassian V, Mathevet T, Perrin C, Michel C (2006) Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations. Water Resources Res 42

  • Peng RD (2008) Simpleboot: simple bootstrap routines. R package version 1:1–3

    Google Scholar 

  • R Core Team, v. (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

  • Renard D, Rhemtulla JM, Bennett EM (2015) Historical dynamics in ecosystem service bundles. Proc Natl Acad Sci 112:13411–13416

    Article  CAS  Google Scholar 

  • Rousseau AN, Fortin JP, Turcotte R, Royer A, Savary S, Quévy F, Noël P, Paniconi C (2011) PHYSITEL, a specialized GIS for supporting the implementation of distributed hydrological models. Water N. - Off Mag Can Water Resour Assoc 31:18–20

    Google Scholar 

  • Rousselet GA, Pernet CR, Wilcox RR (2017) Beyond differences in means: robust graphical methods to compare two groups in neuroscience. Eur J Neurosci 46:1738–1748

    Article  Google Scholar 

  • Scarpari Spolidorio E (2019) Évaluation de la valeur ajoutée des données physiographiques à haute résolution dans la modélisation hydrologique distribuée: cas d’application de la plateforme PHYSITEL-HYDROTEL sur le bassin de la rivière St-Charles. Institut National de la Recherche scientifique, Québec, Canada

    Google Scholar 

  • Schneider C, Laizé C, Acreman M, Flörke M (2013) How will climate change modify river flow regimes in Europe? Hydrol Earth Syst Sci 17:325–339

    Article  Google Scholar 

  • Seifollahi-Aghmiuni S, Nockrach M, Kalantari Z (2019) The potential of Wetlands in achieving the sustainable development goals of the 2030 Agenda. Water 11

  • Shen H, Tolson BA, Mai J (2022) Time to update the split‐sample approach in hydrological model calibration. Water Resources Res 58

  • Singh J, Knapp HV, Arnold JG, Demissie M (2005) Hydrologic modeling of the Iroquois river watershed using HSPF and SWAT. J Am Water Res Association 343–360

  • Svancara LK, Brannon J R, Scott M, Groves CR, Noss RF, Pressey RL (2005) Policy-driven versus evidence-based conservation: a review of political targets and biological needs. Bioscience 55:989–995

    Article  Google Scholar 

  • Tang Y, Leon AS, Kavvas M (2020) Impact of size and location of wetlands on watershed-scale flood control. Water Resour Manage 34:1693–1707

    Article  Google Scholar 

  • Thorslund J, Jarsjo J, Jaramillo F, Jawitz JW, Manzoni S, Basu NB, Chalov SR, Cohen MJ, Creed IF, Goldenberg R (2017) Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol Eng 108:489–497

    Article  Google Scholar 

  • Tolson BA, Sharma V, Swayne DA (2014) Parallel Implementations of the Dynamically Dimensioned Search (DDS) Algorithm. Pages 573–582 in Environmental Software Systems, Prague, Czech Republic

  • Turcotte R, Rousseau AN, Fortin J-P, Villeneuve J-P (2003) A Process-Oriented, Multiple-Objective Calibration Strategy Accounting for Model Structure. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R editors Calibration of Watershed Models. American Geophysical Union, Washington, D. C, p 345

    Google Scholar 

  • Turcotte R, Fortin JP, Rousseau AN, Massicotte S, Villeneuve JP (2001) Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. J Hydrol 240:225–242

    Article  Google Scholar 

  • Turcotte R, Fortin LG, Fortin V, Fortin JP, Villeneuve JP (2007) Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada. Hydrol Res 38:211–234

    Article  Google Scholar 

  • van Vliet MT, Franssen WH, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Change 23:450–464

    Article  Google Scholar 

  • Wanders N, Van Lanen H (2015) Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models. Nat Hazards Earth Syst Sci 15:487–504

    Article  Google Scholar 

  • Wang X, Yang W, Melesse AM (2008) Using hydrologic equivalent Wetland concept within SWAT to estimate streamflow in watersheds with numerous Wetlands. Trans ASABE 51:55–72

    Article  Google Scholar 

  • Wang X, Shang S, Qu Z, Liu T, Melesse AM, Yang W (2010) Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. J Environ Manag 91:1511–1525

    Article  CAS  Google Scholar 

  • De Wit M, Van Den Hurk B, Warmerdam P, Torfs P, Roulin E, Van Deursen W (2007) Impact of climate change on low-flows in the river Meuse. Climatic Change 82:351–372

    Article  Google Scholar 

  • Woodley S, Locke H, Laffoley D, MacKinnon K, Sandwith T, Smart J (2019) A review of evidence for area-based conservation targets for the post-2020 global biodiversity framework. Parks 25:31–46

    Article  Google Scholar 

  • Yapo PO, Gupta HV, Sorooshian S (1996) Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J Hydrol 181:23–48

    Article  CAS  Google Scholar 

  • Zambrano-Bigiarini M (2020) hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Article  Google Scholar 

  • Zeng L, Chu X (2021) Integrating depression storages and their spatial distribution in watershed-scale hydrologic modeling. Adv Water Resour 151:103911

    Article  Google Scholar 

Download references

Funding

This research was supported by the MITACS Accelerate program, the Ouranos consortium (project 554030) via the Quebec government 2013–2020 action plan on climate change, the watershed organization of the study region (OBV de la Capitale), and Quebec city. MITACS grants were attributed to J-OG and MB.

Author information

Authors and Affiliations

Authors

Contributions

J-OG, MP and SS developed the idea and the conceptual framework of the study. J-OG and SS designed the methodology. SS and MB performed simulations and J-OG analyzed the data. J-OG led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication. Our research was discussed with local stakeholders to seek feedback on the questions to be addressed and the approach to be considered.

Corresponding author

Correspondence to Jean-Olivier Goyette.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goyette, JO., Savary, S., Blanchette, M. et al. Setting Targets for Wetland Restoration to Mitigate Climate Change Effects on Watershed Hydrology. Environmental Management 71, 365–378 (2023). https://doi.org/10.1007/s00267-022-01763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-022-01763-z

Keywords

  • Conservation targets
  • Wetlands
  • Flood and drought
  • Climate change
  • Ecosystem services
  • Landscape management