Assessing the Impacts of Urban Land Use Changes on Regional Ecosystem Services According to Urban Green Space Policies Via the Patch-Based Cellular Automata Model

Abstract

As urbanization affects the quality of regional ecosystems, which are needed to ensure the well-being of residents, urban land management plans should consider ecosystem services. While several studies have assessed urbanization impacts on regional ecosystem services in developing urban areas, they used limited approaches that only considered options pertaining to urban green space management. A modeling approach that simulates changes in urban land use and associated ecosystem services can better support urban land management decisions by comparing the effects of different scenarios. We simulated urban land use change impacts on regional ecosystem services using a patch-based cellular automata model and assessment tools for seven ecosystem service indicators in different urban management scenarios regarding green space policies in Ansan, South Korea. The simulation results showed spatial patterns of land use changes and impacts on associated ecosystem services although their impacts varied according to different service types. While urbanization affected regional ecosystem services to a lesser extent than land use changes, urban green space policies contributed to increasing ecosystem services. Our approach provides useful information for improved policy decisions with regard to coupling urban management with ecosystem services, as urban green spaces are necessary for residents’ well-being.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alberti M, Marzluff JM (2004) Ecological resilience in urban ecosystems: linking urban patterns to human and ecological fractions. Urban Ecosyst 7:241–265. https://doi.org/10.1023/B:UECO.0000044038.90173.c6

    Article  Google Scholar 

  2. Ansan (2016) Ansan comprehensive city plan 2020, Ansan-si

  3. Bae CHC (1998) Korea’s greenbelts: Impacts and options for change. Pac Rim Law Policy J 7:479

    Google Scholar 

  4. Bastian O, Haase D, Grunewald K (2012) Ecosystem properties, potentials and services—the EPPS conceptual framework and an urban application example. Ecol Indic 21:7–16. https://doi.org/10.1016/j.ecolind.2011.03.014

    Article  Google Scholar 

  5. Baur JWR, Tynon JF, Gómez E (2013) Attitudes about urban nature parks: a case study of users and nonusers in Portland, Oregon. Landsc Urban Plan 117:100–111. https://doi.org/10.1016/j.landurbplan.2013.04.015

    Article  Google Scholar 

  6. Boumans R, Roman J, Altman I, Kaufman L (2015) The Mutliscale Integrated Model of Ecosystem Services (MIMES): simulating the interactions of coupled human and natural systems. Ecosys Serv 12:30–41. https://doi.org/10.1016/j.ecoser.2015.01.004

    Article  Google Scholar 

  7. Brunner P, Cozens P (2013) ‘Where have all tree gone?’ Urban consolidation and the demise of urban vegetation: a case study from Western Australia. Plan Pr Res 28:231–255. https://doi.org/10.1080/02697459.2012.733525

    Article  Google Scholar 

  8. Burkhard B, Kroll F, Müller F, Windhost W (2009) Landscapes’ capacity to provide ecosystem services-a concept for land-cover based assessments. Landsc Online 15:1–22. https://doi.org/10.3097/LO.200915

    Article  Google Scholar 

  9. Chang J, Qu Z, Xu R, Pan K, Xu B, Min Y, Ren Y, Yang G, Ge Y (2017) Assessing the ecosystem services provided by urban green spaces along urban center-edge gradients. Sci Rep. 7:1111226. https://doi.org/10.1038/s41598-017-11559-5

    CAS  Article  Google Scholar 

  10. Dadvand P, de Nazelle A, Triguero-Mas M, Schembari A, Cirach M, Amoly E, Figueras F, Basagana X, Ostro B, Nieuwenhuijsen M (2012) Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data. Environ Health Persp 120:1286–1290. https://doi.org/10.1289/ehp.1104609

    CAS  Article  Google Scholar 

  11. Delphin S, Escobedo FJ, Abd-Elrahman A, Cropper WP (2016) Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 54:188–199. https://doi.org/10.1016/j.landusepol.2016.02.006

    Article  Google Scholar 

  12. Dorning MA, Koch J, Shoemaker DA, Meentemeyer RK (2015) Simulating urbanization scenarios reveals tradeoffs between conservation planning strategies. Landsc Urban Plan 136:28–39. https://doi.org/10.1016/j.landurbplan.2014.11.011

    Article  Google Scholar 

  13. Eigenbord F, Bell VA, Davies HN, Heinemeyer A, Armsworth PR, Gaston KJ (2011) The impact of projected increases in urbanization on ecosystem services. Proceedings B 278:3201–3208. https://doi.org/10.1098/rspb.2010.2754

    Article  Google Scholar 

  14. Engelen G (2002) Cellular automata for modelling land use change as driven by socio-economic, environmental and policy factors I. Research Institute for Knowledge System (RIKS)

  15. Estoque RC, Murayama Y (2016) Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc Ecol 31:1481–1507. https://doi.org/10.1007/s10980-016-0341-6

    Article  Google Scholar 

  16. Farrell K (2017) The rapid urban growth triad: a new conceptual framework for examining the urban transition in developing countries. Sustainability 9:1407. https://doi.org/10.3390/su9081407

    Article  Google Scholar 

  17. Feng Y, Liu Y, Tong X, Liu M, Deng S (2011) Modelling dynamic urban growth using cellular automata and particle swarm optimization. Landsc Urban Plan 102:188–196. https://doi.org/10.1016/j.landurbplan.2011.04.004

    Article  Google Scholar 

  18. Fu B, Liu Y, Lü Y, He C, Zeng Y, Wu B (2011) Assessing the soil erosion control service of ecosystems change in the Loss Plateau of China. Ecol Complex 8:284–293. https://doi.org/10.1016/j.ecocom.2011.07.003

    Article  Google Scholar 

  19. Fuglsang M, Münier B, Hansen HS (2013) Modelling land-use effects of future urbanization using cellular automata: an Eastern Danish case. Environ Model Softw 50:1–11. https://doi.org/10.1016/j.envsoft.2013.08.003

    Article  Google Scholar 

  20. Graça M, Alves P, Goncalves J, Nowak DJ, Hoehn R, Farinha-Marques P, Cunha M (2018) Assessing how green space types affect ecosystem services delivery in Porto, Portugal. Landsc Urban Plan 170:195–208. https://doi.org/10.1016/j.landurbplan.2017.10.007

    Article  Google Scholar 

  21. Gyeonggi Province (2017) Report on future population estimation of cities in Gyeonggi Province, Gyeonggi-do, Suwon. 341p

  22. Haaland C, van den Bosch CK (2015) Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban Urban Gree 14:750–771. https://doi.org/10.1016/j.ufug.2015.07.009

    Article  Google Scholar 

  23. Haase D, Haase A, Kabisch N, Kabisch S, Rink D (2012) Actors and factors in land-use simulation: the challenge of urban shrinkage. Environ Model Softw 35:92–103. https://doi.org/10.1016/j.envsoft.2012.02.012

    Article  Google Scholar 

  24. Heink U, Hauck J, Jax K, Sukopp U (2016) Requirements for the selection of ecosystem service indicators – The case of MAES indicators. Ecol Indic 61:18–26. https://doi.org/10.1016/j.ecolind.2015.09.031

  25. Hitchings R (2010) Urban greenspace from the inside out: an argument for the approach and a study with city workers. Geoforum 41:855–864. https://doi.org/10.1016/j.geoforum.2010.07.004

    Article  Google Scholar 

  26. Hunter AJ, Luck GW (2015) Defining and measuring the social-ecological quality of urban greenspace: a semi-systematic review. Urban Ecosyst 18:1139–1163. https://doi.org/10.1007/s11252-015-0456-6

    Article  Google Scholar 

  27. Kabisch N (2015) Ecosystem service implementation and governance challenges in urban green space planning—the case of Berlin, Germany. Land Use Policy 42:557–567. https://doi.org/10.1016/j.landusepol.2014.09.005

    Article  Google Scholar 

  28. Kabisch N, Frantzeskaki N, Pauleit S, Naumann S, Davis M, Artmann M, Haase D, Knapp S, Korn H, Stadler J, Zaunberger K, Bonn A (2016) Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol Soc 21:39. https://doi.org/10.5751/ES-08373-210239

    Article  Google Scholar 

  29. Kabisch N, Haase D (2014) Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc Urban Plan 122:129–139. https://doi.org/10.1016/j.landurbplan.2013.11.016

    Article  Google Scholar 

  30. Kang H, Seely B, Wang G, Innes J, Zheng D, Chen P, Wang T, Li Q (2016) Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province. Sci Tot Environ 557-558:80–90. https://doi.org/10.1016/j.scitotenv.2016.03.361

    CAS  Article  Google Scholar 

  31. Kim I, Kim S, Lee J, Kwon H (2018) Analysis on ecosystem service hotspots based on regional environmental stakeholders’ perception—a case study of Ansan. J Environ Impact Assess 27:417–430. https://doi.org/10.14249/eia.2018.27.5.417

    Article  Google Scholar 

  32. Kim JI, Chung JH, Chung HW (2000) The estimate of the urban development effects of the subway construction using GIS. J Kor Assoc Geo Inform Stud 3(4):22–32

    Google Scholar 

  33. Korea Development Institute (2012) Study on land price change in residence development projects. Korea Development Institute Report 2012-23, Seoul

  34. Korea Forest Research Institute (2017) The Lungs of the city, urban forests, Seoul

  35. Lauf S, Haase D, Kleinschmit B (2014) Linkage between ecosystem services provisioning, urban growth and shrinkage—a modeling approach assessing ecosystem service trade-offs. Ecol Indic 42:73–94. https://doi.org/10.1016/j.ecolind.2014.01.028

    Article  Google Scholar 

  36. Lauf S, Haase D, Kleinschmit B (2016) The effects of growth, shrinkage, population aging and preference shifts on urban development—a spatial scenario analysis of Berlin, Germany. Land Use Policy 52:240–254. https://doi.org/10.1016/j.landusepol.2015.12.017

    Article  Google Scholar 

  37. Lee HK (2012) Shiwa regional reclamation development project and the changes in the environmental management policy. Environ L P 9:153–173

    Google Scholar 

  38. Lee HR, Lautenbach S (2016) A quantitative review of relationships between ecosystem services. Ecol Indic 66:340–351. https://doi.org/10.1016/j.ecolind.2016.02.004

    Article  Google Scholar 

  39. Lee WK, Sohn SY, Heo J (2018) Utilizing mobile phone-based floating population data to measure the spatial accessibility to public transit. Appl Geogr 92:123–130. https://doi.org/10.1016/j.apgeog.2018.02.003

    Article  Google Scholar 

  40. Li X, Gong P, Yu L, Hu T (2017) A segment derived patch-based logistic cellular automata for urban growth modeling with heuristic rules. Comput Environ Urban 65:140–149. https://doi.org/10.1016/j.compenvurbsys.2017.06.001

    Article  Google Scholar 

  41. Liu Z, Yang Y, He C, Tu M (2019) Climate change will constrain the rapid urban expansion in drylands: a scenario analysis with the zoned Land Use Scenario Dynamics-urban model. Sci Total Environ 651:2772–2786. https://doi.org/10.1016/j.scitotenv.2018.10.177

    CAS  Article  Google Scholar 

  42. Lo AYH, Jim CY (2010) Differential community effects on perception and use of urban greenspace. Cities 27:430–442. https://doi.org/10.1016/j.cities.2010.07.001

    Article  Google Scholar 

  43. Lu Y, Cao M, Zhang L (2015) A vector-based cellular automata model for simulating urban land use change. Chin Geogr Sci 25:74–84. https://doi.org/10.1007/s11769-014-0719-9

    CAS  Article  Google Scholar 

  44. Luederitz C, Brink E, Gralla F, Hermelingmeier V, Meyer M, Niven L, Panzer L, Partelow S, Rau AL, Sasaki R, Abson DJ, Lang DJ, Wamsler C, von Wehrden H (2015) A review of urban ecosystem services: six key challenges for future research. Ecosyst Serv 14:98–112. https://doi.org/10.1016/j.ecoser.2015.05.001

    Article  Google Scholar 

  45. Lyu R, Zhang J, Xu M, Li J (2018) Impacts of urbanization on ecosystem services and their temporal relations: a case study in Northern Nigxia, China. Land Use Policy 77:163–173. https://doi.org/10.1016/j.landusepol.2018.05.022

    Article  Google Scholar 

  46. Maas J, van Dillen SME, Verheij RA, Groenewegen PP (2009) Social contacts as a possible mechanism behind the relation between green space and health. Health Place 15:586–595. https://doi.org/10.1016/j.healthplace.2008.09.006

    Article  Google Scholar 

  47. McMorris O, Villeneuve PJ, Su J, Jerrett M (2015) Urban greenness and physical activity in a national survey of Canadians. Environ Res 137:94–100. https://doi.org/10.1016/j.envres.2014.11.010

    CAS  Article  Google Scholar 

  48. MEA (2005) Ecosystems and human well-being: current status and trends. Island Press, Washington, DC, USA

    Google Scholar 

  49. Ministry of Environment (2018) A pilot project for assessment and mapping of ecosystem services. Ministry of Environment, Sejong

  50. Mustafa A, Heppenstall A, Omrani H, Saadi I, Cools M, Teller J (2018) Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Comput Environ Urban 67:147–156. https://doi.org/10.1016/j.compenvurbsys.2017.09.009

    Article  Google Scholar 

  51. National Institute of Ecology (2017) Mapping and assessment of ecosystem services. National Institute of Ecology, Seocheon

    Google Scholar 

  52. Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolny S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 5:e14327. https://doi.org/10.1371/journal.pone.0014327

    CAS  Article  Google Scholar 

  53. Niemelä J, Saarela SR, Söderman T, Kopperoinen L, Yli-Pelkonen V, Väre S, Kotze DJ (2010) Using the ecosystem service approach for better planning and conservation of urban green spaces: a Finland case study. Biodivers Conserv 19:3225–3243. https://doi.org/10.1007/s10531-010-9888-8

    Article  Google Scholar 

  54. Ng E, Chen L, Wang Y, Yuan C (2012) A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Build Environ 47:256–271. https://doi.org/10.1016/j.buildenv.2011.07.014

    Article  Google Scholar 

  55. Nor ANM, Costanje R, Harris JA, Brewer T (2017) Impact of rapid urban expansion on green space structure. Ecol Indic 81:274–284. https://doi.org/10.1016/j.ecolind.2017.05.031

    Article  Google Scholar 

  56. Oldfield EE, Warren RJ, Felson AJ, Bradford MA (2013) Challenges and future directions in urban afforestation. J Appl Ecol 50:1169–1177. https://doi.org/10.1111/1365-2664.12124

    Article  Google Scholar 

  57. Outeiro L, Häussermann V, Viddi F, Hucke-Gaete R, Försterra G, Oyarzo H, Kosiel K, Villasante S (2015) Using ecosystem services mapping for marine spatial planning in southern Chile under scenario assessment. Ecosyst Serv 16:341–353. https://doi.org/10.1016/j.ecoser.2015.03.004

    Article  Google Scholar 

  58. Park M, Hagishima A, Tanimoto J, Narita K (2012) Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Build Environ 56:38–46. https://doi.org/10.1016/j.buildenv.2012.02.015

    Article  Google Scholar 

  59. Parrachini ML, Zulian G, Kopperoinen L, Maes J, Schägner JP, Termansen M, Zandersen M, Perez-Soba M, Schloefield PA, Bidoglio G (2014) Mapping cultural ecosystem services: a framework to assess the potential for outdoor recreation across the EU. Ecol Indic 45:371–385. https://doi.org/10.1016/j.ecolind.2014.04.018

    Article  Google Scholar 

  60. Payne LL, Mowen AJ, Orsega-Smith E (2002) An examination of park preferences and behaviors among urban residents: the role of residential location, race and age. Leis Sci 24:181–198. https://doi.org/10.1080/01490400252900149

    Article  Google Scholar 

  61. Peng J, Tian L, Liu Y, Zhao M, Hu Y, Wu J (2017) Ecosystem services responses to urbanization in metropolitan areas: threshold identification. Sci Total Environ 607-608:706–714. https://doi.org/10.1016/j.scitotenv.2017.06.218

    CAS  Article  Google Scholar 

  62. Pickard BR, van Berkel D, Petrasova A, Meentemeyer RK (2017) Forecasts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landsc Ecol 32:617–634. https://doi.org/10.1007/s10980-016-0465-8

    Article  Google Scholar 

  63. Plantinga AJ, Lubowski RN, Stavins RN (2002) The effects of potential land development on agricultural land prices. J Urban Econ 52(3):561–581. https://doi.org/10.1016/S0094-1190(02)00503-X

    Article  Google Scholar 

  64. Portela R, Rademacher I (2001) A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecol Model 143:115–146. https://doi.org/10.1016/S0304-3800(01)00359-3

    Article  Google Scholar 

  65. Prestele R, Alexander P, Rounsevell MDA, Arneth A, Calvin K, Doelman J, Eitelberg DA, Engström K, Fujimori S, Hasegawa T, Havlik P, Humpenöder F, Jain AK, Krisztin T, Kyle P, Meiyappan P, Popp A, Sands RD, Schaldach R, Schüngel J, Stehfest E, Tabeau A, van Meiji H, van Vliet J, Verburg P (2016) Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob Change Biol 22:3967–3983. https://doi.org/10.1111/gcb.13337

    Article  Google Scholar 

  66. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci USA 107:5242–5247. https://doi.org/10.1073/pnas.0907284107

    Article  Google Scholar 

  67. Roh YH, Kim CK, Hong HJ (2016) Time-series changes to ecosystem regulating services in Jeju: focusing on estimating carbon sequestration and evaluating economic feasibility. J Envrion Policy Admin 24:29–44. https://doi.org/10.15301/jepa.2016.24.2.29

    Article  Google Scholar 

  68. Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96:108–122. https://doi.org/10.1016/j.landurbplan.2010.03.001

    Article  Google Scholar 

  69. Schwarz N, Haase D, Seppelt R (2012) Omnipresent sprawl? A review of urban simulation models with respect to urban shrinkage. Environ Plann B Plann Des 37:265–283. https://doi.org/10.1068/b35087

    Article  Google Scholar 

  70. Seto KC, Parnell S, Elmqvist T (2013) A global outlook on urbanization. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (Eds.) Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. Springer, Dordrecht

    Google Scholar 

  71. Song CH, Lee WK, Choi HA, Jeon SW, Kim JU, Kim JS, Kim JT(2015) Application of InVEST water yield model for assessing forest water provisioning ecosystem service Kor Assoc Geogr Inform Stud 18:120–134. https://doi.org/10.11108/kagis.2015.18.1.120

    Article  Google Scholar 

  72. Sun X, Crittenden JC, Li F, Lu Z, Dou X (2018) Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci Total Environ 622-623:974–987. https://doi.org/10.1016/j.scitotenv.2017.12.062

    CAS  Article  Google Scholar 

  73. Tan PY, Wang J, Sia A (2013) Perspectives on five decades of the urban greening of Singapore. Cities 32:24–32. https://doi.org/10.1016/j.cities.2013.02.001

    Article  Google Scholar 

  74. Trisurat Y, Eawpanich P, Kalliola R (2016) Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. Environ Res 147:611–620. https://doi.org/10.1016/j.envres.2016.02.019

    CAS  Article  Google Scholar 

  75. United Nations (2017) World population prospects: The 2017 revision, key finding and advance tables. Working paper No. ESA/P/WP/248

  76. United Nations (2018) 2018 Revision of world urbanization prospects. United Nations, New York, NY

    Google Scholar 

  77. Uy PD, Nakagoshi N (2008) Application of land suitability analysis and landscape ecology to urban greenspace planning in Hanoi, Vietnam. Urban Urban Gree 7:25–40. https://doi.org/10.1016/j.ufug.2007.09.002

    Article  Google Scholar 

  78. Verburg PH, de Nijs TCM, van Eck JR, Visser H, de Jong K (2004) A method to analyse neighbourhood characteristics of land use patterns. Comput Environ Urban 28:667–690. https://doi.org/10.1016/j.compenvurbsys.2003.07.001

    Article  Google Scholar 

  79. Wang F, Marceau DJ (2013) A patch-based cellular automaton for simulating land-use changes at fine spatial resolution. T GIS 17:828–846. https://doi.org/10.1111/tgis.12009

    Article  Google Scholar 

  80. Wong CP, Jiang B, Kinzig AP, Lee KN, Ouyang Z (2015) Linking ecosystem characteristics to final ecosystem service for public policy. Ecol Lett 18:108–118. https://doi.org/10.1111/ele.12389

    Article  Google Scholar 

  81. Xu L, You H, Li D, Yu K (2016) Urban green spaces, their spatial pattern, and ecosystem service value: the case of Beijing. Habitat Int 56:84–95. https://doi.org/10.1016/j.habitatint.2016.04.005

    Article  Google Scholar 

  82. Yao Y, Liu X, Li X, Liu P, Hong Y, Zhang Y, Mai K (2017) Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. Int J Geogr Inform Sci 31:2452–2479. https://doi.org/10.1080/13658816.2017.1360494

    Article  Google Scholar 

  83. Yirsaw E, Wu W, Shi X, Temesgen H, Bekele B (2017) Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability 9:1204. https://doi.org/10.3390/su9071204

    Article  Google Scholar 

  84. Zank B, Bagstad KJ, Voigt B, Villa F (2016) Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: a case study in the Puget Sound, Washington, USA. Landsc Urban Plann 149:31–42. https://doi.org/10.1016/j.landurbplan.2016.01.004

    Article  Google Scholar 

  85. Zhang S, Wu C, Liu H, Na X (2011) Impact of urbanization on natural ecosystem service value: a comparative study. Environ Monit Assess 179:575–588. https://doi.org/10.1007/s10661-010-1764-1

    Article  Google Scholar 

  86. Zhou X, Wang YC (2011) Spatio-temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc Urban Plan 100:268–277. https://doi.org/10.1016/j.landurbplan.2010.12.013

    Article  Google Scholar 

  87. Zheng H, Li Y, Robinson BE, Liu G, Ma D, Wang F, Lu F, Ouyang Z, Daily GC (2016) Using ecosystem service trade-offs in inform water conservation policies and management practices. Front Ecol Environ 14:527–532. https://doi.org/10.1002/fee.1432

    Article  Google Scholar 

  88. Zölch T, Wamsler C, Pauleit S (2018) Integrating the ecosystem-based approach into municipal climate adaptation strategies: The case of Germany. J Clean Prod 170:966–977. https://doi.org/10.1016/j.jclepro.2017.09.146

Download references

Acknowledgements

This work was funded by the National Institute of Ecology in Korea (NIE-Strategy research-2018-07).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyuksoo Kwon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Kwon, H. Assessing the Impacts of Urban Land Use Changes on Regional Ecosystem Services According to Urban Green Space Policies Via the Patch-Based Cellular Automata Model. Environmental Management 67, 192–204 (2021). https://doi.org/10.1007/s00267-020-01394-2

Download citation

Keywords

  • Urbanization
  • Land use change
  • Ecosystem service
  • Scenario assessment
  • Cellular automata