Skip to main content
Log in

Characterizing Particulate Matter Exfiltration Estimates for Alternative Cookstoves in a Village-Like Household in Rural Nepal

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Alternative stoves are an intervention option to reduce household air pollution. The amount of air pollution exiting homes when alternative stoves are utilized is not known. In this paper, particulate matter exfiltration estimates are presented for four types of alternative stoves within a village-like home, which was built to reflect the use of local materials and common size, in rural Nepal. Four alternative stoves with chimneys were examined, which included an alternative mud brick stove, original Envirofit G3355 model, manufacture altered Envirofit G3355, and locally altered Envirofit G3355. Multiple linear regression was utilized to determine estimates of PM2.5 exfiltration. Overall exfiltration fraction average (converted to a percent) for the four stoves were: alternative mud brick stove with chimney 56%, original Envirofit G3355 model with chimney 87%, manufacture altered Envirofit G3355 model with chimney 69%, and locally altered Envirofit G3355 model with chimney 69%. Alternative cookstoves resulted in higher overall average exfiltration due to direct and indirect ventilation relative to traditional, mud-based stoves. This contrast emphasizes the need for an improved understanding of the climate and health implications that are believed to come from implementing alternative stoves on a large scale and the resultant shift of exposure burden from indoors to outdoors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adkins E, Tyler E, Wang J, Siriri D, Modi V (2010) Field testing and survey evaluation of household biomass cookstoves in rural sub-saharan africa. Energy Sustain Dev 14(3):172–85. doi:10.1016/j.esd.2010.07.003

    Article  Google Scholar 

  • Bailis R, Ogle D, MacCarty N et al. (2007) The Partnership for Clean Indoor Air. The Water Boiling Test (WBT), Version 3.0. http://www.pciaonline.org/files/WBT_Version_3.0_0.pdf

  • Balakrishnan K, Cohen A, Smith KR (2014) Addressing the burden of disease attributable to air pollution in India: The need to integrate across household and ambient air pollution exposures. Environ Health Perspect 122(1):A6–7. doi:10.1289/ehp.1307822

    Article  Google Scholar 

  • Balakrishnan S, Sankar J, Parikh R, Padmavathi K, Srividya V, Venugopal S, Prasad, Pandey VL (2002) Daily average exposures to respirable particulate matter from combustion of biomass fuels in rural households of Southern India. Environ Health Perspect 110(11):1069

    Article  Google Scholar 

  • Baumgartner J, Schauer JJ, Ezzati M, Lu L, Cheng C, Patz J, Bautista LE (2011) Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China: biomass smoke exposure in rural china. Indoor Air 21(6):479–88. doi:10.1111/j.1600-0668.2011.00730.x

    Article  CAS  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG et al. (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118(11):5380–5552. doi:10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A Technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109(D14):D14203

    Article  Google Scholar 

  • Bond TC, Sun Haolin (2005) Can reducing black carbon emissions counteract global warming? Environ Sci Technol 39(16):5921–26. doi:10.1021/es0480421

    Article  CAS  Google Scholar 

  • Brauer M, Bartlett K, Regalado-Pineda J, Perez-Padilla R (1995) Assessment of particulate concentrations from domestic biomass combustion in rural Mexico. Environ Sci Technol 30(1):104–109

    Article  Google Scholar 

  • Bruce N, McCracken J, Albalak R, Schei MA, Smith KR, Lopez V, West C (2004) Impact of improved stoves, house construction and child location on levels of indoor air pollution exposure in young guatemalan children. J Expo Anal Environ Epidemiol 14:S26–S33. doi:10.1038/sj.jea.7500355

    Article  CAS  Google Scholar 

  • Bruce N, Perez-Padilla R, Albalak R (2000) Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 78(9):1078–1092

    CAS  Google Scholar 

  • Cao JJ. (2012) Indoor/outdoor relationships for organic and elemental carbon in pm2.5 at residential homes in Guangzhou, China. Aerosol Air Qual Res. doi:10.4209/aaqr.2012.02.0026

  • Carmichael GR, Adhikary B, Kulkarni S, D’Allura A, Tang Y, Streets D, Zhang Q et al. (2009) Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change. Environ Sci Technol 43(15):5811–17. doi:10.1021/es8036803

    Article  CAS  Google Scholar 

  • Chafe ZA, Brauer M, Klimont Z, Dingenen Rita Van, Mehta Sumi, Rao S, Riahi K, Dentener F, and Smith KR. 2014. Household cooking with solid fuels contributes to ambient pm2.5 air pollution and the burden of disease. Environ Health Perspect. doi:10.1289/ehp.1206340

  • Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, and Balbus JM. 2013. Health and household air pollution from solid fuel use: the need for improved exposure assessment. Environ Health Perspect. doi:10.1289/ehp.1206429

  • Goldemberg J, Johansson TB, Dennis A, United Nations Development Programme, United Nations, Dept. of Economic and Social Affairs, and World Energy Council (2004) World Energy Assessment: Overview: 2004 Update. United Nations Development Programme, Bureau for Development Policy, New York, NY

    Google Scholar 

  • Granderson J, Sandhu JS, Vasquez D, Ramirez E, Smith KR (2009) Fuel use and design analysis of improved woodburning cookstoves in the guatemalan highlands. Biomass Bioenergy 33(2):306–15. doi:10.1016/j.biombioe.2008.06.003

    Article  Google Scholar 

  • Grieshop AP, Julian DM, Kandlikar M (2011) “Health and climate benefits of cookstove replacement options.” Energy Policy 39(12):7530–42. doi:10.1016/j.enpol.2011.03.024

    Article  CAS  Google Scholar 

  • Hinds William C (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. 2 edn. Wiley-Interscience, New York, NY

    Google Scholar 

  • Jacobson MZ (2010) Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J Geophys Res 115:D14209. doi:10.1029/2009JD013795

  • Jetter JJ, Kariher P (2009) Solid-fuel household cook stoves: characterization of performance and emissions. Biomass Bioenergy 33(2):294–305

    Article  CAS  Google Scholar 

  • Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T, DeCarlo P, Hays MD (2012) Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ Sci Technol 46(19):10827–34. doi:10.1021/es301693f

    Article  CAS  Google Scholar 

  • Johnson Michael, Edwards Rufus, Ghilardi Adrián, Berrueta Victor, Gillen Dan, Frenk ClaudioAlatorre, Masera Omar (2009) Quantification of carbon savings from improved biomass cookstove projects. Environ Sci Technol 43(7):2456–62. doi:10.1021/es801564u

    Article  CAS  Google Scholar 

  • Just B, Rogak S, and Kandlikar M (2013). Characterization of ultrafine particulate matter from traditional and improved biomass cookstoves. Environ Sci Technol. doi:10.1021/es304351p

  • Kar A, Ibrahim HR, Jennifer B, Puppala SP, Suresh R, Singh L, Singh VK, Ahmed T, Ramanathan N, Ramanathan V (2012) Real-time assessment of black carbon pollution in indian households due to traditional and improved biomass cookstoves. Environ Sci Technol. doi:10.1021/es203388g

  • Kinney PL (2015) Intervening to Improve Infant Health in Ghana. https://clinicaltrials.gov/ct2/show/NCT01335490

  • Koch D, Bond TC, Streets D, Unger N, van der Werf GR (2007) Global impacts of aerosols from particular source regions and sectors. J Geophys Res Atmos 112(D2):D02205. doi:10.1029/2005JD007024

    Article  Google Scholar 

  • Koziński JA, Saade R (1998) Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. an experimental study. Fuel 77(4):225–37. doi:10.1016/S0016-2361(97)00201-9

    Article  Google Scholar 

  • MacCarty N, Ogle D, Still D, Bond T, Roden C (2008) A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain Dev 12(2):56–65

    Article  CAS  Google Scholar 

  • Martin II, William J, Glass R, Araj H, Balbus J, Collins FS, Curtis S, Diette GB, Elwood WN, Falk H, Hibberd PL (2013) Household air pollution in low-and middle-income countries: health risks and research priorities. PLoS Med 10(6):e1001455. doi:10.1371/journal.pmed.1001455

    Article  Google Scholar 

  • National Risk Management Research Laboratory (2000) Greenhouse gases from small-scale combustion devices in developing countries: phase IIA household stoves in India. US Environmental Protection Agency, Research Trangle Park, NC

  • Ojo KD, Soneja SI, Scrafford CG, Khatry SK, LeClerq SC, Checkley W, Katz J, Breysse PN, Tielsch JM (2015) Indoor particulate matter concentration, water boiling time, and fuel use of selected alternative cookstoves in a home-like setting in rural Nepal. Int J Environ Res Public Health 12(7):7558–81. doi:10.3390/ijerph120707558

    Article  CAS  Google Scholar 

  • Pollard SL, Williams D’Ann L, Breysse PN, Baron PA, Grajeda LM, Gilman RH, Miranda JJ, Checkley W (2014) A cross-sectional study of determinants of indoor environmental exposures in households with and without chronic exposure to biomass fuel smoke. Environ Health 13(1):21

    Article  Google Scholar 

  • Rehman IH, Ahmed T, Praveen PS, Kar A, Ramanathan V (2011) “Black carbon emissions from biomass and fossil fuels in rural India.”. Atmos Chem Phys Discuss 11(April):10845–10874

    Article  Google Scholar 

  • Rhodes EL, Dreibelbis R, Klasen E, Naithani N, Baliddawa J, Menya D, Khatry S et al. (2014) Behavioral attitudes and preferences in cooking practices with traditional open-fire stoves in peru, Nepal, and Kenya: implications for improved cookstove interventions. Int J Environ Res Public Health 11(10):10310–26. doi:10.3390/ijerph111010310

    Article  Google Scholar 

  • Roden CA, Bond TC, Conway S, Benjamin A, Pinel O, MacCarty N, Still D (2009) laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos Environ 43(6):1170–81. doi:10.1016/j.atmosenv.2008.05.041

    Article  CAS  Google Scholar 

  • Salje H, Gurley ES, Homaira N, Ram PK, Haque R, Petri W, Moss WJ, Luby SP, Breysse P, Azziz-Baumgartner E (2014) Impact of neighborhood biomass cooking patterns on episodic high indoor particulate matter concentrations in clean fuel homes in Dhaka, Bangladesh. Indoor Air 24(2):213–20. doi:10.1111/ina.12065

    Article  CAS  Google Scholar 

  • Sasser, E et al. 2012. US EPA Report to Congress on Black Carbon: Department of the Interior, Environment, and Related Agencies Appropriations Act, 2010. US EPA. http://www.epa.gov/blackcarbon/2012report/fullreport.pdf

  • Shen G, Xue M, Chen Y, Yang C, Li W, Shen H, Huang Ye et al. (2014) Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves. Atmos Environ 89(June):337–45. doi:10.1016/j.atmosenv.2014.01.033

    Article  CAS  Google Scholar 

  • Sherman MH (1990) Tracer-gas techniques for measuring ventilation in a single zone. Build Environ 25(4):365–374

    Article  Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg SC et al. (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–89. doi:10.1126/science.1210026

    Article  CAS  Google Scholar 

  • Shindell D, Lamarque J-F, Unger N, Koch D, Faluvegi G, Bauer S, Ammann M, Cofala J, Teich H (2008) Climate forcing and air quality change due to regional emissions reductions by economic sector. Atmos Chem Phys 8(23):7101–7113

    Article  CAS  Google Scholar 

  • Smith KR, Jerrett M, Anderson HR, Burnett RT, Stone V, Derwent R, Atkinson RW et al. (2010) Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet 374(9707):2091–2103

    Article  CAS  Google Scholar 

  • Smith K, Samet J, Romieu I, Bruce N (2000) Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax 55:518–32

    Article  CAS  Google Scholar 

  • Soneja SI, Chen C, Tielsch JM, Katz J, Zeger SL, Checkley W, Curriero FC, Breysse PN (2014) Humidity and gravimetric equivalency adjustments for nephelometer-based particulate matter measurements of emissions from solid biomass fuel use in cookstoves. Int J Environ Res Public Health 11(6):6400–6416. doi:10.3390/ijerph110606400

    Article  Google Scholar 

  • Soneja SI, James MT, Curriero FC, Zaitchik B, Khatry SK, Yan B, Chillrud SN, Breysse PN (2015) Determining particulate matter and black carbon exfiltration estimates for traditional cookstove use in rural nepalese village households. Environ Sci Technol 49(9):5555–62. doi:10.1021/es505565d

    Article  CAS  Google Scholar 

  • Soneja SI, James MT, Subarna KK, Frank CC, and Patrick NB (2016). Highlighting uncertainty and recommendations for improvement of black carbon biomass fuel-based emission inventories in the indo-gangetic plain region. Curr Environ Health Rep. doi:10.1007/s40572-016-0075-2

  • Tielsch JM, Katz J, Zeger SL, Khatry SK, Shrestha L, Breysse P, Checkley W, Mullany LC and LeClerq SC (2014). Designs of two randomized, community-based trials to assess the impact of alternative cookstove installation on respiratory illness among young children and reproductive outcomes in Rural Nepal. BMC Public Health. doi:10.1186/1471-2458-14-1271

  • Torrey CM, Moon KA, Williams D’AnnL, Green T, Cohen JE, Navas-Acien A, Breysse PN (2015) Waterpipe cafes in baltimore, maryland: carbon monoxide, particulate matter, and nicotine exposure. J Expo Sci Environ Epidemiol 25(4):405–10. doi:10.1038/jes.2014.19

    Article  CAS  Google Scholar 

  • United Nations Foundation (2014) Global Alliance for Clean Cookstoves. http://www.cleancookstoves.org/

  • USAID/ECO-Asia CDCP (2010) Black Carbon Emissions in Asia: Sources, Impacts, and Abatement Opportunities, USAID. http://www.cleanenergyasia.net/library/black-carbon-emissions-asia-sources-impacts-and-abatement-opportunities

  • Venkataraman C (2005) Residential biofuels in south asia: carbonaceous aerosol emissions and climate impacts. Science 307(5714):1454–56. doi:10.1126/science.1104359

    Article  CAS  Google Scholar 

  • Venkataraman C, Sagar AD, Habib G, Lam N, Smith KR (2010) The Indian national initiative for advanced biomass cookstoves: the benefits of clean combustion. Energy Sustain Develop 14(2):63–72. doi:10.1016/j.esd.2010.04.005

    Article  CAS  Google Scholar 

  • Wallack JS, Ramanathan V (2009) The other climate changers: why black carbon and ozone also matter. Foreign Aff 88:105

    Google Scholar 

  • Wilson R, Spengler JD (1996) Particles in our air: concentrations and health effects. Harvard University Press, Cambridge

    Google Scholar 

  • Zhang J, Smith KR, Ma Y, Ye S, Jiang F, Qi W, Liu P, Khalil MAK, Rasmussen RA, Thorneloe SA (2000) Greenhouse gases and other airborne pollutants from household stoves in china: a database for emission factors. Atmos Environ 34(26):4537–4549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the field research supervisors and staff, Steve LeClerq, Mr. Pramod Sah, Mr. Bharat Bahadur, Dr. Ana Rule, Dr. D’ann Williams, Jana Mihalic, and Chen Chen. This manuscript is dedicated to the late Dr. Alison Geyh for being a great colleague and mentor.

Funding

Sources include a grant from The Environment, Energy, and Sustainability Institute at Johns Hopkins; grant support from the National Institute of Environmental Health Sciences (ES015558; ES003819), and the Thrasher Research Fund (02830-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutyajeet I. Soneja.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soneja, S.I., Tielsch, J.M., Khatry, S.K. et al. Characterizing Particulate Matter Exfiltration Estimates for Alternative Cookstoves in a Village-Like Household in Rural Nepal. Environmental Management 60, 797–808 (2017). https://doi.org/10.1007/s00267-017-0915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0915-3

Keywords

Navigation