Ecological and reproductive drivers of fission-fusion dynamics in chimpanzees (Pan troglodytes schweinfurthii) inhabiting a montane forest

Abstract

In species with flexible grouping dynamics (i.e., fission-fusion), party (or subgroup) size is often shaped by available resources. Food resources are thought to limit party size in a range of mammalian species, reflecting a strategy of reducing feeding competition. In montane habitats, where food is highly seasonal, we may expect to see strong effects of ecological constraints on party size. In the montane forest of Nyungwe National Park, Rwanda, we quantified changes in chimpanzee (Pan troglodytes schweinfurthii) party size. We used path analysis to analyze the direct and indirect effects of (i) ecological variables and (ii) a reproductive variable (estrous females) on party size. Our path analysis adds precision and directionality to the hypothesis that food availability and estrous females influence party size. We found that the presence of estrous females had the strongest effect on party size. Interestingly, the availability and distribution of important and preferred fruits did not directly influence party size but did influence the presence of estrous females. These findings indicate that fruit distribution may be the ecological precondition that attracts estrous females, which is the main driver of larger parties. Party size was, however, positively correlated with patch size, indicating that specific fruit species may be of particular importance to the ecology of these chimpanzees.

Significance statement

In montane habitats with lower fruit tree density and diversity than lowland sites, it may be expected that ecological factors play a more important role in fission-fusion grouping patterns than reproductive factors. This is because the cost of competition for food among group members may be higher in a more resource-limited (montane) environment. We investigated the ecological and reproductive factors that influence grouping patterns of chimpanzees in a montane forest that encompasses the upper limit of this species’ altitudinal range. Our results showed that the presence of estrous females had the strongest influence on party size. These results have implications for evaluating ecological and reproductive drivers of chimpanzee party size across differing habitats.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–266. https://doi.org/10.1163/156853974X00534

    CAS  Article  PubMed  Google Scholar 

  2. Anderson DP, Nordheim EV, Boesch C, Moermond TC (2002) Factors influencing fission-fusion grouping in chimpanzees in the Taï National Park, Côte d’Ivoire. In: Boesch C, Hohmann G, Marchant LF (eds) Behavioural Diversity in Chimpanzees and Bonobos. Cambridge University Press, Cambridge, pp 90–101

    Google Scholar 

  3. Anderson DP, Nordheim EV, Boesch C (2006) Environmental factors influencing the seasonality of estrus in chimpanzees. Primates 47:43–50. https://doi.org/10.1007/s10329-005-0143-y

    Article  PubMed  Google Scholar 

  4. Aureli F, Schaffner CM, Boesch C et al (2008) Fission-fusion dynamics: new research frameworks. Curr Anthropol 49:627–654. https://doi.org/10.1086/586708

    Article  Google Scholar 

  5. Baden AL, Webster TH, Kamilar J (2015) Resource seasonality and reproduction predict fission-fusion dynamics in black-and-white ruffed lemurs (Varecia variegata). Am J Primatol 78:256–279. https://doi.org/10.1002/ajp.22507

    Article  PubMed  Google Scholar 

  6. Basabose AK (2004) Fruit availability and chimpanzee party size at Kahuzi montane forest, Democratic Republic of Congo. Primates 45:211–219. https://doi.org/10.1007/s10329-004-0087-7

    Article  PubMed  Google Scholar 

  7. Boesch C (1996) Social grouping in Taï chimpanzees. In: McGrew WC, Marchant LF, Nishida T (eds) . Great Ape Societies. Cambridge University Press, Cambridge, pp 101–113

    Google Scholar 

  8. Boesch C, Boesch-Achermann H (2000) The Chimpanzees of the Taï Forest. Oxford University Press, Oxford

    Google Scholar 

  9. Bond ML, Lee DE, Ozgul A, König B (2019) Fission-fusion dynamics of a megaherbivore are driven by ecological, anthropogenic, temporal, and social factors. Oecologia 191:335–347. https://doi.org/10.1007/s00442-019-04485-y

    Article  PubMed  Google Scholar 

  10. Bradbury JW, Vehrencamp SL (1976) Social organization and foraging in emballonurid bats: a model for the determination of group size. Behav Ecol Sociobiol 1:383–404. https://doi.org/10.1007/BF00299400

    Article  Google Scholar 

  11. Chapman CA (1990) Ecological constraints on group size in three species of Neotropical primates. Folia Primatol 55:1–9. https://doi.org/10.1159/000156492

    CAS  Article  Google Scholar 

  12. Chapman CA, Chapman LJ (2000) Determinants of group size in primates: the importance of travel costs. In: Boinski S, Garber PA (eds) On the Move: How and Why Animals Travel in Goups. University of Chicago Press, Chicago, pp 24–42

    Google Scholar 

  13. Chapman CA, Chapman LJ, Wrangham RW (1995) Ecological constraints on group size: an analysis of spider monkey and chimpanzee subgroups. Behav Ecol Sociobiol 36:59–70. https://doi.org/10.1007/BF00175729

    Article  Google Scholar 

  14. Chapman CA, Wasserman MD, Gillespie TR, Speirs ML, Lawes MJ, Saj TL, Ziegler TE (2006) Do food availability, parasitism, and stress have synergystic effects on red colobus populations living in fragments? Am J Phys Anthropol 131:525–534. https://doi.org/10.1002/ajpa.20477

    Article  PubMed  Google Scholar 

  15. Clutton-Brock TH (1989) Mammalian mating systems. Proc R Soc Lond 236:339–372. https://doi.org/10.1098/rspb.1989.0027

    CAS  Article  PubMed  Google Scholar 

  16. Clutton-Brock TH (2016) Mammal societies. John Wiley & Sons, Chichester

    Google Scholar 

  17. Dahl JF, Nadler RD, Collins DC (1991) Monitoring the ovarian cycles of Pan troglodytes and P. paniscus: a comparative approach. Am J Primatol 24:195–209. https://doi.org/10.1002/ajp.1350240306

    Article  PubMed  Google Scholar 

  18. Deschner T, Heistermann M, Hodges K, Boesch C (2003) Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus. Anim Behav 66:551–560. https://doi.org/10.1006/anbe.2003.2210

    Article  Google Scholar 

  19. East ML, Burke T, Wilhelm K, Greig C, Hofer H (2003) Sexual conflicts in spotted hyenas: male and female mating tactics and their reproductive outcome with respect to age, social status and tenure. Proc R Soc Lond 270:1247–1254. https://doi.org/10.1098/rspb.2003.2363

    Article  Google Scholar 

  20. Ganas J, Robbins MM (2005) Ranging behavior of the mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda: a test of the ecological constraints model. Behav Ecol Sociobiol 58:277–288. https://doi.org/10.1007/s00265-005-0920-z

    Article  Google Scholar 

  21. Goldsmith M (2003) Comparative behavioral ecology of a lowland and highland gorilla population: where do Bwindi gorillas fit? In: Taylor AB, Goldsmith ML (eds) Gorilla Biology. Cambridge University Press, Cambridge, pp 358–383

    Google Scholar 

  22. Goodall J (1968) The behaviour of free-living chimpanzees in the Gombe Stream Reserve. Anim Behav Monogr 1:161–311. https://doi.org/10.1016/S0066-1856(68)80003-2

    Article  Google Scholar 

  23. Goodall J (1986) The Chimpanzees of Gombe: patterns of behavior. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  24. Green SJ, Boruff BJ, Grueter CC (2020a) From ridgetops to ravines: landscape drivers of chimpanzee ranging patterns. Anim Behav 163:51–60. https://doi.org/10.1016/j.anbehav.2020.02.016

    Article  Google Scholar 

  25. Green SJ, Boruff BJ, Niyigaba P, Ndikubwimana I, Grueter CC (2020b) Chimpanzee ranging responses to fruit availability in a high-elevation environment. Am J Primatol 82:e23119. https://doi.org/10.1002/ajp.23119

    Article  PubMed  Google Scholar 

  26. Grieg-Smith P (1983) Quantitative plant ecology, 3rd edn. University of California Press, Berkeley

    Google Scholar 

  27. Gross-Camp ND, Kaplin BA (2005) Chimpanzee (Pan troglodytes) seed dispersal in an Afromontane forest: microhabitat influences on the postdispersal fate of large seeds. Biotropica 37:641–649. https://doi.org/10.2307/30043231

    Article  Google Scholar 

  28. Grow NB, Gursky-Doyen S, Krzton A (2014) High altitude primates. Springer, New York

    Google Scholar 

  29. Hashimoto C, Furuichi T, Tashiro Y (2001) What factors affect the size of chimpanzee parties in the Kalinzu forest, Uganda? Examination of fruit abundance and number of estrous females. Int J Primatol 22:947–959. https://doi.org/10.1023/A:1012061504420

    Article  Google Scholar 

  30. Hashimoto C, Suzuki S, Takenoshita Y, Yamagiwa J, Basabose AK, Furuichi T (2003) How fruit abundance affects the chimpanzee party size: a comparison between four study sites. Primates 44:77–81. https://doi.org/10.1007/s10329-002-0026-4

    Article  PubMed  Google Scholar 

  31. Heithaus MR, Dill LM (2002) Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83:480–491. https://doi.org/10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2

    Article  Google Scholar 

  32. Holekamp KE, Ogutu JO, Frank LG, Dublin HT, Smale L (1993) Fission of a spotted hyena clan: ceonsequences of female absenteeism and causes of female emigration. Ethology 93:285–299. https://doi.org/10.1111/j.1439-0310.1993.tb01210.x

    Article  Google Scholar 

  33. Holmes SM, Gordon AD, Louis EE Jr, Johnson SE (2016) Fission-fusion dynamics in black-and-white ruffed lemurs may facilitate both feeding strategies and communal care of infants in a spatially and temporally variable environment. Behav Ecol Sociobiol 70:1949–1960. https://doi.org/10.1007/s00265-016-2201-4

    Article  Google Scholar 

  34. Isabirye-Basuta G (1988) Food competition among individuals in a free-ranging chimpanzee community in Kibale Forest, Uganda. Behaviour 105:135–147. https://doi.org/10.1163/156853988x00485

    Article  Google Scholar 

  35. Isbell LA (1991) Contest and scramble competition: patterns of female aggression and ranging behavior among primates. Behav Ecol 2:143–155. https://doi.org/10.1093/beheco/2.2.143

    Article  Google Scholar 

  36. Janson CH (1988) Food competition in brown capuchin monkeys (Cebus apella): quantitative effects of group size and tree productivity. Behaviour 105:53–76. https://doi.org/10.1163/156853988X00449

    Article  Google Scholar 

  37. Janson CH, Goldsmith ML (1995) Predicting group size in primates: foraging costs and predation risks. Behav Ecol 6:326–336. https://doi.org/10.1093/beheco/6.3.326

    Article  Google Scholar 

  38. Kingsolver JG, Schemske DW (1991) Path analysis of selection. Trends Ecol Evol 6:276–280. https://doi.org/10.1016/0169-5347(91)90004-H

    CAS  Article  PubMed  Google Scholar 

  39. Kirkpatrick RC, Grueter CC (2010) Snub-nosed monkeys: multilevel societies across varied environments. Evol Anthropol 19:98–113. https://doi.org/10.1002/evan.20259

    Article  Google Scholar 

  40. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574. https://doi.org/10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  41. Lehmann J, Korstjens AH, Dunbar RIM (2007a) Fission–fusion social systems as a strategy for coping with ecological constraints: a primate case. Evol Ecol 21:613–634. https://doi.org/10.1007/s10682-006-9141-9

    Article  Google Scholar 

  42. Lehmann J, Korstjens AH, Dunbar RIM (2007b) Group size, grooming and social cohesion in primates. Anim Behav (6):1617–1629. https://doi.org/10.1016/j.anbehav.2006.10.025

  43. Leighton M, Leighton DR (1982) The relationship of size of feeding aggregate to size of food patch: Howler monkeys (Allouatta palliata) feeding in Trichilia cipo fruit trees on Barro Colorado Island. Biotropica 14:81–90. https://doi.org/10.2307/2387735

    Article  Google Scholar 

  44. Matsumoto-Oda A, Hosaka K, Huffman M, Kawanaka K (1998) Factors affecting party size in chimpanzees of the Mahale Mountains. Int J Primatol 19:999–1011. https://doi.org/10.1023/a:1020322203166

    Article  Google Scholar 

  45. Matsuzawa T, Humle T, Sugiyama Y (2011) The Chimpanzees of Bossou and Nimba. Springer, Tokyo

    Google Scholar 

  46. Matthews JK, Ridley A, Niyigaba P, Kaplin BA, Grueter CC (2019) Chimpanzee feeding ecology and fallback food use in the montane forest of Nyungwe National Park, Rwanda. Am J Primatol 81:e22971. https://doi.org/10.1002/ajp.22971

    Article  PubMed  Google Scholar 

  47. Mitani JC, Watts DP, Lwanga JS (2002) Ecological and social correlates of chimpanzee party size and composition. In: Boesch C, Hohmann G, Marchant LF (eds) Behavioural Diversity in Chimpanzees and Bonobos. Cambridge University Press, Cambridge, pp 102–111

    Google Scholar 

  48. Newton-Fisher NE, Reynolds V, Plumptre AJ (2000) Food supply and chimpanzee (Pan troglodytes schweinfurthii) party size in the Budongo Forest Reserve, Uganda. Int J Primatol 21:613–628. https://doi.org/10.1023/A:1005561203763

    Article  Google Scholar 

  49. Nijman V (2014) Distribution and ecology of the most tropical of the high-elevation montane colobines: the ebony langur on Java. In: Grow NB, Gursky-Doyen S, Krzton A (eds) High Altitude Primates. Springer, New York, pp 115–132

    Google Scholar 

  50. Nyirambangutse B, Zibera E, Uwizeye FK et al (2017) Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest. Biogeosciences 14:1285–1303. https://doi.org/10.5194/bg-14-1285-2017

    Article  Google Scholar 

  51. Orbach DN, Packard JM, Würsig B (2014) Mating and group size in dusky dolphins (Lagenorhynchus obscurus): costs and benefits of scramble competition. Ethology 120:804–815. https://doi.org/10.1111/eth.12253

    Article  Google Scholar 

  52. Pepper JW, Mitani JC, Watts DP (1999) General gregariousness and specific social preferences among wild chimpanzees. Int J Primatol 20:613–632. https://doi.org/10.1023/a:1020760616641

    Article  Google Scholar 

  53. Pinacho-Guendulain B, Ramos-Fernandez G (2017) Influence of fruit availability on the fission-fusion dynamics of spider monkeys (Ateles geoffroyi). Int J Primatol 38:466–484. https://doi.org/10.1007/s10764-017-9955-z

    Article  Google Scholar 

  54. Potts KB (2008) Habitat heterogeneity on multiple spatial scales in Kibale National Park, Uganda: implications for chimpanzee population ecology and grouping patterns. PhD Thesis, Yale University

  55. Potts KB (2011) The long-term impact of timber harvesting on the resource base of chimpanzees in Kibale National Park, Uganda. Biotropica 43:256–264. https://doi.org/10.1111/j.1744-7429.2010.00671.x

    Article  Google Scholar 

  56. Potts KB, Watts DP, Wrangham RW (2011) Comparative feeding ecology of two communities of chimpanzees (Pan troglodytes) in Kibale National Park, Uganda. Int J Primatol 32:669–690. https://doi.org/10.1007/s10764-011-9494-y

    Article  Google Scholar 

  57. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, https://www.R-project.org/

  58. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x

    Article  Google Scholar 

  59. Riedel J, Franz M, Boesch C (2011) How feeding competition determines female chimpanzee gregariousness and ranging in the Taï National Park, Côte d’Ivoire. Am J Primatol 73:305–313. https://doi.org/10.1002/ajp.20897

    Article  PubMed  Google Scholar 

  60. Rodrigues M (2017) Female spider monkeys (Ateles geoffroyi) cope with anthropogenic disturbance through fission–fusion dynamics. Int J Primatol 38:838–855. https://doi.org/10.1007/s10764-017-9981-x

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sakura O (1994) Factors affecting party size and composition of chimpanzees (Pan troglodytes verus) Bossou, Guinea. Int J Primatol 15:167–183. https://doi.org/10.1007/bf02735272

    Article  Google Scholar 

  62. Smith JE, Kolowski JM, Graham KE, Dawes SE, Holekamp KE (2008) Social and ecological determinants of fission–fusion dynamics in the spotted hyaena. Anim Behav 76:619–636. https://doi.org/10.1016/j.anbehav.2008.05.001

    Article  Google Scholar 

  63. Smolker RA, Richards AF, Connor RC, Pepper JW (1992) Sex-differences in patterns of association among Indian-ocean bottle-nosed dolphins. Behaviour 123:38–69. https://doi.org/10.1163/156853992X00101

    Article  Google Scholar 

  64. Strier KB (1989) Effects of patch size on feeding associations in muriquis (Brachyteles arachnoides). Folia Primatologica 52:70–77. https://doi.org/10.1159/000156383

    CAS  Article  Google Scholar 

  65. Sueur C, Salz P, Weber C, Petit O (2011) Land use in semi-free ranging Tonkean macaques Macaca tonkeana depends on environmental conditions: a geographical information system approach. Curr Zool 57:8–17. https://doi.org/10.1093/czoolo/57.1.8

    Article  Google Scholar 

  66. Symington MM (1988) Food competition and foraging party size in the black spider monkey (Ateles paniscus chamek). Behaviour 105:117–134. https://doi.org/10.1163/156853988X00476

    Article  Google Scholar 

  67. Szykman M, Van Horn RC, Engh AL, Boydston EE, Holekamp KE (2007) Courtship and mating in free-living spotted hyenas. Behaviour 144:815–846. https://doi.org/10.1163/156853907781476418

    Article  Google Scholar 

  68. Teichroeb JA, Sicotte P (2009) Test of the ecological-constraints model on ursine colobus monkeys (Colobus vellerosus) in Ghana. Am J Primatol 71:49–59. https://doi.org/10.1002/ajp.20617

    Article  PubMed  Google Scholar 

  69. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual Selection and the Descent of Man. Aldine-Atherton, Chicago, pp 136–207

    Google Scholar 

  70. Tutin CEG (1979) Mating patterns and reproductive strategies in a community of wild chimpanzees (Pan troglodytes schweinfurthii). Behav Ecol Sociobiol 6:29–38. https://doi.org/10.1007/bf00293242

    Article  Google Scholar 

  71. Tutin CEG, Fernandez M, Rogers ME, Williamson EA, McGrew WC (1991) Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope Reserve, Gabon. Philos Trans R Soc B 334:179–186. https://doi.org/10.1098/rstb.1991.0107

    CAS  Article  Google Scholar 

  72. Valeix M, Loveridge AJ, Macdonald DW (2012) Influence of prey dispersion on territory and group size of African lions: a test of the resource dispersion hypothesis. Ecology 93:2490–2496. https://doi.org/10.1890/12-0018.1

    Article  PubMed  Google Scholar 

  73. van Schaik CP, van Hooff JARAM (1983) On the ultimate causes of primate social systems. Behaviour 85:91–117. https://doi.org/10.1163/156853983X00057

    Article  Google Scholar 

  74. Wakefield ML (2008) Grouping patterns and competition among female Pan troglodytes schweinfurthii at Ngogo, Kibale National Park, Uganda. Int J Primatol 29:907–929. https://doi.org/10.1007/s10764-008-9280-7

    Article  Google Scholar 

  75. Wallace RB (2008) The influence of feeding patch size and Relative fruit density on the foraging behavior of the black spider monkey Ateles chamek. Biotropica 40:501–506. https://doi.org/10.1111/j.1744-7429.2007.00392.x

    Article  Google Scholar 

  76. Wallis J (1995) Seasonal influence on reproduction in chimpanzees of Gombe National Park. Int J Primatol 16:435–451. https://doi.org/10.1007/bf02735796

    Article  Google Scholar 

  77. Watts DP, Potts KB, Lwanga JS, Mitani JC (2012) Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 1. Diet composition and diversity. Am J Primatol 74:114–129. https://doi.org/10.1002/ajp.21016

    Article  PubMed  Google Scholar 

  78. White FJ, Wrangham RW (1988) Feeding competition and patch size in the chimpanzee species Pan paniscus and Pan troglodytes. Behaviour 105:148–164. https://doi.org/10.1163/156853988X00494

    Article  Google Scholar 

  79. Wittiger L, Boesch C (2013) Female gregariousness in western chimpanzees (Pan troglodytes verus) is influenced by resource aggregation and the number of females in estrus. Behav Ecol Sociobiol 67:1097–1111. https://doi.org/10.1007/s00265-013-1534-5

    Article  Google Scholar 

  80. Wrangham RW (2000) Why are male chimpanzees more gregarious than mothers? A scramble competition hypothesis. In: Kappeler PM (ed) Primate Males: Causes and Consequences of Variation in Group Composition. Cambridge University Press, Cambridge, pp 248–258

    Google Scholar 

  81. Wrangham RW, Gittleman JL, Chapman CA (1993) Constraints on group size in primates and carnivores: population density and day-range as assays of exploitation competition. Behav Ecol Sociobiol 32:199–209. https://doi.org/10.1007/BF00173778

    Article  Google Scholar 

  82. Yamagiwa J, Basabose AK (2014) Socioecological flexibility of gorillas and chimpanzees. In: Yamagiwa J, Karczmarski L (eds) Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies. Springer, Tokyo, pp 43–74

    Google Scholar 

  83. Yamagiwa J, Mwanza N, Spangenberg A, Maruhashi T, Yumoto T, Fischer A, Steinhauer-Burkart B (1993) A census of the eastern lowland gorillas Gorilla gorilla graueri in Kahuzi-Biega National Park with reference to mountain gorillas G. g. beringei in the Virunga Region, Zaire. Biol Conserv 64:83–89. https://doi.org/10.1016/0006-3207(93)90386-f

    Article  Google Scholar 

  84. Yamagiwa J, Kaleme P, Milinganyo M, Basabose AK (1996) Food density and ranging patterns of gorillas and chimpanzees in the Kahuzi-Biega National Park, Zaire. Tropics 6:65–77. https://doi.org/10.3759/tropics.6.65

    Article  Google Scholar 

Download references

Acknowledgments

We thank the government of Rwanda for allowing us to work in Nyungwe National Park, and the Rwanda Development Board, specifically Innocent Ndikubwimana and Kambogo Ildephonse, for facilitating the research. Field work was made possible through assistance and dedication from Fidele Muhayayezu and the chimpanzee trackers. We also thank Göran Wallin for providing climate data. We thank all referees and the editor for the helpful comments on previous versions.

Funding

Funding was provided by the University of Western Australia, UWA Postgraduate Student Association and Basler Stiftung für biologische Forschung (Switzerland).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaya K. Matthews.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All research protocols were reviewed and approved by the University of Western Australia’s Animal Ethics Committee (RA/5/15/1070) as well as the governing body of Nyungwe NP, the Rwanda Development Board/Tourism and Conservation Department.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by D. P. Watts

Supplementary information

ESM 1

(PDF 94 kb)

ESM 2

(PDF 132 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matthews, J.K., Ridley, A., Kaplin, B.A. et al. Ecological and reproductive drivers of fission-fusion dynamics in chimpanzees (Pan troglodytes schweinfurthii) inhabiting a montane forest. Behav Ecol Sociobiol 75, 23 (2021). https://doi.org/10.1007/s00265-020-02964-4

Download citation

Keywords

  • Chimpanzees
  • Ecological constraints
  • Party size
  • Fission-fusion dynamics
  • Montane forest