Minimum spanning tree as a new, robust repertoire size comparison method: simulation and test on birdsong

  • Sándor Zsebők
  • Gábor Herczeg
  • György Blázi
  • Miklós Laczi
  • Gergely Nagy
  • János Török
  • László Zsolt Garamszegi
Methods Paper
  • 82 Downloads

Abstract

The comparison of acoustic complexity across individuals is often essential for understanding the evolution of acoustic signals. In many animal taxa, as a proxy of acoustic complexity, repertoire size is intensively studied; however, its estimation is challenging in species with large repertoires, as this process is time-consuming and may involve considerable subjectivity for the classification of signal elements. Here, we propose a novel application of the minimum spanning tree (MST) method for comparing individuals’ signal complexity, an approach that does not require classification process. We suggest that the differences in the MST length predict the differences in the repertoire sizes between individuals. To evaluate these proposals, first, we performed a simulation study investigating the effect of the practically important variables (repertoire size, number of acoustic parameters, sample size, distribution of element types and within-group variance) on the MST length. Second, we compared repertoire size estimates from the same song data from male collared flycatchers obtained using the fully manual, computer-aided manual and MST methods. In our simulation study, we found that the repertoire size strongly correlated with MST length. We also found significant effects of sample size, number of parameters and within-group variance, as well as how uniformly the samples were distributed between the groups, on the MST length. Our empirical data also revealed a strong correlation between the computer-aided manual estimation of repertoire sizes and MST length, which was comparable to the correlation between the estimations of repertoire size obtained using the two different manual methods. Therefore, we suggest using the MST method to compare the acoustic complexity among individuals in birds and other animals, with the practical restrictions suggested by our simulation results.

Keywords

Acoustic complexity Minimum spanning tree Repertoire size Birdsong 

Notes

Acknowledgments

We are grateful to the members of the Behavioural Ecology Research Group for their assistance during the fieldwork. We thank Péter Burcsi, Karis Douglas, Juliette Linossier and two anonymous reviewers for their comments on the manuscript.

Author contribution

SZ conceived the ideas and designed the methodology; GB, LZG, GN, ML and SZ collected the data; GH, LZG and SZ analysed the data; SZ led the writing of the manuscript. All authors contributed critically to the drafts and gave their final approval for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. Permission for the fieldwork was provided by the Middle-Danube-Valley Inspectorate for Environmental Protection, Nature Conservation and Water Management.

Supplementary material

265_2018_2467_Fig7_ESM.gif (135 kb)
Fig. S1

(GIF 135 kb)

265_2018_2467_MOESM1_ESM.tiff (1.4 mb)
High resolution image (TIFF 1466 kb)
265_2018_2467_Fig8_ESM.gif (309 kb)
Fig. S2

(GIF 309 kb)

265_2018_2467_MOESM2_ESM.tiff (3.5 mb)
High resolution image (TIFF 3582 kb)
265_2018_2467_MOESM3_ESM.docx (254 kb)
ESM 1 (DOCX 254 kb)
265_2018_2467_MOESM4_ESM.xlsx (13 kb)
ESM 2 (XLSX 12 kb)
265_2018_2467_MOESM5_ESM.xlsx (24 kb)
ESM 3 (XLSX 24 kb)
265_2018_2467_MOESM6_ESM.xlsx (27 kb)
ESM 4 (XLSX 27 kb)
265_2018_2467_MOESM7_ESM.xlsx (22 kb)
ESM 5 (XLSX 22 kb)
265_2018_2467_MOESM8_ESM.xlsx (28 kb)
ESM 6 (XLSX 27 kb)
265_2018_2467_MOESM9_ESM.xlsx (16 kb)
ESM 7 (XLSX 16 kb)

References

  1. Aldous D, Steele JM (1992) Asymptoticsfor euclidean minimal spanning-trees on random points. Probab Theory Rel 92:247–258.  https://doi.org/10.1007/bf01194923 CrossRefGoogle Scholar
  2. Anderberg MR (1973) Cluster analysis for applications, 1st edn. Academic Press, New YorkGoogle Scholar
  3. Bartsch C, Weiss M, Kipper S (2015) Multiple song features are related to paternal effort in common nightingales. BMC Evol Biol 15:8.  https://doi.org/10.1186/s12862-015-0390-5 CrossRefGoogle Scholar
  4. Boogert NJ, Fawcett TW, Lefebvre L (2011) Mate choice for cognitive traits: a review of the evidence in nonhuman vertebrates. Behav Ecol 22:447–459.  https://doi.org/10.1093/beheco/arq173 CrossRefGoogle Scholar
  5. Boogert NJ, Giraldeau L-AA, Lefebvre L (2008) Song complexity correlates with learning ability in zebra finch males. Anim Behav 76:1735–1741.  https://doi.org/10.1016/j.anbehav.2008.08.009 CrossRefGoogle Scholar
  6. Bouwman KM, van Dijk RE, Wijmenga JJ, Komdeur J (2007) Older male reed buntings are more successful at gaining extrapair fertilizations. Anim Behav 73:15–27.  https://doi.org/10.1016/j.anbehav.2006.01.031 CrossRefGoogle Scholar
  7. Briefer E, Osiejuk TS, Rybak F, Aubin T (2010) Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach. J Theor Biol 262:151–164.  https://doi.org/10.1016/j.jtbi.2009.09.020 CrossRefPubMedGoogle Scholar
  8. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manage 59:265–278.  https://doi.org/10.1006/jema.2000.0373 CrossRefGoogle Scholar
  9. Byers BE, Kroodsma DE (2009) Female mate choice and songbird song repertoires. Anim Behav 77:13–22.  https://doi.org/10.1016/j.anbehav.2008.10.003 CrossRefGoogle Scholar
  10. Catchpole CK, Slater PJB (2008) Bird song: biological themes and variations, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal, Complex Sytems,1695, http://igraph.sf.net
  12. Dalal YK, Metcalfe RM (1978) Reverse path forwarding of broadcast packets. Commun ACM 21:1040–1048.  https://doi.org/10.1145/359657.359665 CrossRefGoogle Scholar
  13. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1:131–156CrossRefGoogle Scholar
  14. Davidson SM, Wilkinson GS (2002) Geographic and individual variation in vocalizations by male Saccopteryx bilineata (Chiroptera: Emballonuridae). J Mammal 83:526–535.  https://doi.org/10.1644/1545-1542(2002)083<0526:GAIVIV>2.0.CO;2 CrossRefGoogle Scholar
  15. Deecke VB, Janik VM (2006) Automated categorization of bioacoustic signals: avoiding perceptual pitfalls. J Acoust Soc Am 119:645–653.  https://doi.org/10.1121/1.2139067 CrossRefPubMedGoogle Scholar
  16. Djauhari MA, Gan SL (2015) Optimality problem of network topology in stocks market analysis. Physica A 419:108–114.  https://doi.org/10.1016/j.physa.2014.09.060 CrossRefGoogle Scholar
  17. Dunlop RA, Noad MJ, Cato DH, Stokes D (2007) The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae). J Acoust Soc Am 122:2893–2905.  https://doi.org/10.1121/1.2783115 CrossRefPubMedGoogle Scholar
  18. Farina A (2014) Soundscape ecology: principles, patterns, methods and applications. Springer, New YorkCrossRefGoogle Scholar
  19. Forstmeier W, Leisler B (2004) Repertoire size, sexual selection, and offspring viability in the great reed warbler: changing patterns in space and time. Behav Ecol 15:555–563.  https://doi.org/10.1093/beheco/arh051 CrossRefGoogle Scholar
  20. Freeberg TM, Lucas JR (2012) Information theoretical approaches to chick-a-dee calls of Carolina chickadees (Poecile carolinensis). J Comp Psychol 126:68–81.  https://doi.org/10.1037/a0024906 CrossRefPubMedGoogle Scholar
  21. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, San Diego, CAGoogle Scholar
  22. Garamszegi LZ, Balsby TJS, Bell BD et al (2005) Estimating the complexity of bird song by using capture-recapture approaches from community ecology. Behav Ecol Sociobiol 57:305–317.  https://doi.org/10.1007/s00265-004-0866-6 CrossRefGoogle Scholar
  23. Garamszegi LZ, Hegyi G, Heylen D, Ninni P, de Lope F, Eens M, Møller AP (2006a) The design of complex sexual traits in male barn swallows: associations between signal attributes. J Evol Biol 19:2052–2066.  https://doi.org/10.1111/j.1420-9101.2006.01135.x CrossRefPubMedGoogle Scholar
  24. Garamszegi LZ, Merino S, Török J, Eens M, Martínez J (2006b) Indicators of physiological stress and the elaboration of sexual traits in the collared flycatcher. Behav Ecol 17:399–404.  https://doi.org/10.1093/beheco/arj042 CrossRefGoogle Scholar
  25. Garamszegi LZ, Török J, Hegyi G, Szöllősi E, Rosivall B, Eens M (2007) Age-dependent expression of song in the collared flycatcher, Ficedula albicollis. Ethology 113:246–256.  https://doi.org/10.1111/j.1439-0310.2007.01337.x CrossRefGoogle Scholar
  26. Garamszegi LZ, Zsebők S, Török J (2012) The relationship between syllable repertoire similarity and pairing success in a passerine bird species with complex song. J Theor Biol 295:68–76.  https://doi.org/10.1016/j.jtbi.2011.11.011 CrossRefPubMedGoogle Scholar
  27. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871CrossRefGoogle Scholar
  28. Gower JC, Ross GJS (1969) Minimum spanning trees and single linkage cluster analysis. Appl Stat 18:54–64CrossRefGoogle Scholar
  29. Green SR, Mercado E III, Pack AA, Herman LM (2011) Recurring patterns in the songs of humpback whales (Megaptera novaeangliae). Behav Process 86:284–294.  https://doi.org/10.1016/j.beproc.2010.12.014 CrossRefGoogle Scholar
  30. Hailman JP, Ficken JP, Ficken RW (1985) The “chick-a-dee” calls of Parus atricapillus: a recombinant system of animal communication compared with written English. Semiotica 56:191–224CrossRefGoogle Scholar
  31. Hegyi G, Szöllősi E, Jenni-Eiermann S, Török J, Eens M, Garamszegi LZ (2010) Nutritional correlates and mate acquisition role of multiple sexual traits in male collared flycatchers. Naturwissenschaften 97:567–576.  https://doi.org/10.1007/s00114-010-0672-0 CrossRefPubMedGoogle Scholar
  32. Hesler N, Mundry R, Dabelsteen T (2012a) Are there age-related differences in the song repertoire size of Eurasian blackbirds? Acta Ethol 15:203–210.  https://doi.org/10.1007/s10211-012-0127-z CrossRefGoogle Scholar
  33. Hesler N, Mundry R, Sacher T, Coppack T, Bairlein F, Dabelsteen T (2012b) Song repertoire size correlates with measures of body size in Eurasian blackbirds. Behaviour 149:645–665.  https://doi.org/10.1163/156853912X649920 CrossRefGoogle Scholar
  34. Hopp SL, Owren MJ, Evans CS (1998) Animal acoustic communication: sound analysis and research methods. Springer-Verlag, BerlinCrossRefGoogle Scholar
  35. Kaplan G (2014) Animal communication. WIRES Cogn Sci 5:661–677.  https://doi.org/10.1002/wcs.1321 CrossRefGoogle Scholar
  36. Kershenbaum A, Freeberg TM, Gammon DE (2015) Estimating vocal repertoire size is like collecting coupons: a theoretical framework with heterogeneity in signal abundance. J Theor Biol 373:1–11.  https://doi.org/10.1016/j.jtbi.2015.03.009 CrossRefPubMedGoogle Scholar
  37. Kiefer S, Sommer C, Scharff C, Kipper S, Mundry R (2009) Tuning towards tomorrow? Common nightingales Luscinia megarhynchos change and increase their song repertoires from the first to the second breeding season. J Avian Biol 40:231–236CrossRefGoogle Scholar
  38. Lachlan RF, Verhagen L, Peters S, ten Cate C (2010) Are there species-universal categories in bird song phonology and syntax? Comparative study of chaffinches (Fringilla coelebs), zebra finches (Taenopygia guttata), and swamp sparrows (Melospiza georgiana). J Comp Psychol 124:92–108CrossRefPubMedGoogle Scholar
  39. Laiolo P, Vögeli M, Serrano D, Tella JL (2008) Song diversity predicts the viability of fragmented bird populations. PLoS One 3:e1822.  https://doi.org/10.1371/journal.pone.0001822 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Linossier J, Zsebők S, Baudry E, Aubin T, Courvoisier H (2016) Acoustic but no genetic divergence in migratory and sedentary populations of blackcaps, Sylvia atricapilla. Biol J Linn Soc 119:68–79.  https://doi.org/10.1111/bij.12799 CrossRefGoogle Scholar
  41. Mandelbrot B (1953) Contribution à la théorie mathématique des jeux de communication. PhD thesis, Institut Henri Poincaré, ParisGoogle Scholar
  42. McComb K, Semple S (2005) Coevolution of vocal communication and sociality in primates. Biol Lett 1:381–385.  https://doi.org/10.1098/rsbl.2005.0366 CrossRefPubMedPubMedCentralGoogle Scholar
  43. McIlraith AL, Card HC (1997) Birdsong recognition using backpropagation and multivariate statistics. IEEE T Signal Proces 45:2740–2748CrossRefGoogle Scholar
  44. Mountjoy DJ, Lemon RE (1997) Male song complexity and parental care in the European starling. Behaviour 134:661–675CrossRefGoogle Scholar
  45. Peshek KR, Blumstein DT (2011) Can rarefaction be used to estimate song repertoire size in birds? Curr Zool 57:300–306CrossRefGoogle Scholar
  46. Podani J, Schmera D (2006) On dendrogram-based measures of functional diversity. Oikos 115:179–185.  https://doi.org/10.1111/j.2006.0030-1299.15048.x CrossRefGoogle Scholar
  47. Potvin DA, Parris KM (2012) Song convergence in multiple urban populations of silvereyes (Zosterops lateralis). Ecol Evol 2:1977–1984.  https://doi.org/10.1002/ece3.320 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Price JJ, Yuan DH (2011) Song-type sharing and matching in a bird with very large song repertoires, the tropical mockingbird. Behaviour 148:673–689CrossRefGoogle Scholar
  49. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org Google Scholar
  50. Ranjard L, Withers SJ, Brunton DH, Ross HA, Parsons S (2015) Integration over song classification replicates: song variant analysis in the hihi. J Acoust Soc Am 137:2542–2551.  https://doi.org/10.1121/1.4919329 CrossRefPubMedGoogle Scholar
  51. Read AF, Weary DM (1992) The evolution of bird song: comparative analyses. Philos T Roy Soc B 338:165–187CrossRefGoogle Scholar
  52. Rong J, Li G, Chen Y-PP (2009) Acoustic feature selection for automatic emotion recognition from speech. Inform Process Manag 45:315–328CrossRefGoogle Scholar
  53. Soma M, Garamszegi LZ (2011) Rethinking birdsong evolution: meta-analysis of the relationship between song complexity and reproductive success. Behav Ecol 22:363–371.  https://doi.org/10.1093/beheco/arq219 CrossRefGoogle Scholar
  54. Somervuo P, Harma A (2004) Bird song recognition based on syllable pair histograms. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, pp V-825–V-828Google Scholar
  55. Spada E, Sagliocca L, Sourdis J, Garbuglia AR, Poggi V, de Fusco C, Mele A (2004) Use of the minimum spanning tree model for molecular epidemiological investigation of a nosocomial outbreak of hepatitis C virus infection. J Clin Microbiol 42:4230–4236.  https://doi.org/10.1128/JCM.42.9.4230-4236.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sparling D, Williams J (1978) Multivariate analysis of avian vocalizations. J Theor Biol 74:83–107CrossRefPubMedGoogle Scholar
  57. Stowell D, Plumbley MD (2014) Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2:e488.  https://doi.org/10.7717/peerj.488 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014) Acoustic indices for biodiversity assessment and landscape investigation. Acta Acust United Ac 100:772–781.  https://doi.org/10.3813/AAA.918757 CrossRefGoogle Scholar
  59. Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP (2000) A procedure for an automated measurement of song similarity. Anim Behav 59:1167–1176.  https://doi.org/10.1006/anbe.1999.1416 CrossRefPubMedGoogle Scholar
  60. Thompson NS, LeDoux K, Moody K (1994) A system for describing bird song units. Bioacoustics 5:267–279CrossRefGoogle Scholar
  61. Towsey M, Wimmer J, Williamson I, Roe P (2014) The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecol Inform 21:110–119.  https://doi.org/10.1016/j.ecoinf.2013.11.007 CrossRefGoogle Scholar
  62. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar
  63. Wildenthal JL (1965) Structure in primary song of the mockingbird (Mimus polyglottos). Auk 82:161–189.  https://doi.org/10.2307/4082931 CrossRefGoogle Scholar
  64. Xia CW, Lin XL, Liu W, Lloyd H, Zhang YY (2012) Acoustic identification of individuals within large avian populations: a case study of the brownish-flanked bush warbler, South-Central China. PLoS One 7:e42528.  https://doi.org/10.1371/journal.pone.0042528 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Xia CW, Wei CT, Zhang YY (2015) Territory tenure increases with repertoire size in brownish-flanked bush warbler. PLoS ONE 10:e0122789. doi: e0122789  https://doi.org/10.1371/journal.pone.0122789
  66. Zollinger SA, Riede T, Suthers RA (2008) Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations. J Exp Biol 211:1978–1991.  https://doi.org/10.1242/jeb.014092 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zsebők S, Herczeg G, Blázi G, Laczi M, Nagy G, Szász E, Markó G, Török J, Garamszegi LZ (2017) Short- and long-term repeatability and pseudo-repeatability of bird song: sensitivity of signals to varying environments. Behav Ecol Sociobiol 71:154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Behavioural Ecology Group, Department of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Evolutionary EcologyEstación Biológica de Doñana-CSICSevilleSpain
  3. 3.MTA-ELTE, Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical BiologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations