Skip to main content

Advertisement

Log in

Energetic trade-offs and feedbacks between behavior and metabolism influence correlations between pace-of-life attributes

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

A Correction to this article was published on 23 April 2018

This article has been updated

Abstract

Correlations between behavioral, physiological, and morphological traits linked to life history have been given the label “pace-of-life syndrome” (POLS), hypothesized to arise through variation in the resolution of a trade-off between present and future reproduction. However, other trade-offs over energy allocation may also have effects and influence the present-future trade-off. We analyzed an optimality model of basal metabolic rate (BMR) across variation in food availability and two types of mortality. The model contained three major features: (1) feedback between activity and energy acquisition, (2) links between BMR and the use of energy for other traits, and (3) allocation trade-offs between BMR and all other traits, between activity and defense, and between defense against activity-related risk and activity-independent risk. The model produced an intermediate optimal BMR that was usually highest at an intermediate level of food availability. Food availability and both types of mortality risk interacted to influence the exact value of optimal BMR. Trait correlations expected in the POLS existed under some environmental conditions, but these correlations flipped sign under different conditions and were not always strong. Our model reproduces trait correlations consistent with the POLS, but also generated a “sloppy” syndrome with considerable non-POLS-like variation. In addition, among-individual, non-adaptive variation in BMR produced adjustments of the other traits. These fit a best-of-a-bad job strategy, and the adjustments further weakened trait correlations. The results emphasize that variation in resources and mortality risk creates a diversity of correlation structures. This complexity means the POLS is likely to be a variable construct.

Significance statement

Many attributes important for reproduction and survival are associated. Such associations may arise through common physiological processes and correlated selection. We modeled metabolic rate within a system in which foraging behavior both depended on and mediated the acquisition of resources necessary for metabolism, while energy was allocated among multiple attributes. Variation in several environmental variables (food availability and two types of mortality risk) influenced basal metabolic rate, activity, and defenses against mortality risk. This variation affected the correlations between the traits in complex ways. When basal metabolic rate was non-optimal, evolution of the allocation of energy to other traits partially compensated, but this further eroded consistent trait correlations. Our results indicate that complexity in how energy is acquired and used can potentially disrupt trait correlations normally associated with the pace-of-life syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 23 April 2018

    Equation 3 of the original published version of this article was incorrect. Correct presentation is given below.

References

  • Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. P Natl Acad Sci USA 111:740–745

    Article  CAS  Google Scholar 

  • Adriaenssens B, Johnsson JI (2011) Shy trout grow faster: exploring links between personality and fitness-related traits in the wild. Behav Ecol 22:135–143

    Article  Google Scholar 

  • Anholt BR, Werner EE (1995) Interaction between food availability and predation mortality mediated by adaptive behavior. Ecology 76:2230–2234

    Article  Google Scholar 

  • Arendt JD, Reznick DN (2005) Evolution of juvenile growth rates in female guppies (Poecilia reticulata): predator regime or resource level? Proc R Soc Lond B 272:333–337

    Article  Google Scholar 

  • Barber I, Dingemanse NJ (2010) Parasitism and the evolutionary ecology of animal personality. Philos T Roy Soc B 365:4077–4088

    Article  Google Scholar 

  • Bauwens D, Diaz-Uriarte R (1997) Covariation of life-history traits in lacertid lizards: a comparative study. Am Nat 149:91–111

    Article  Google Scholar 

  • Bielby J, Mace GM, Bininda-Emonds ORP, Cardillo M, Gittleman JL, Jones KE, Orme CDL, Purvis A (2007) The fast-slow continuum in mammalian life history: an empirical reevaluation. Am Nat 169:748–757

    PubMed  CAS  Google Scholar 

  • Biro PA, Abrahams MV, Post JR, Parkinson EA (2004) Predators select against high growth rates and risk-taking behaviour in domestic trout populations. Proc R Soc Lond B 271:2233–2237

    Article  Google Scholar 

  • Biro PA, Abrahams MV, Post JR, Parkinson EA (2006) Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J Anim Ecol 75:1165–1171

    Article  PubMed  Google Scholar 

  • Biro PA, Stamps JA (2010) Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol Evol 25:653–659

    Article  PubMed  Google Scholar 

  • Bjørkvoll E, Grøtan V, Aanes S, Sæther BE, Engen S, Aanes R (2012) Stochastic population dynamics and life-history variation in marine fish species. Am Nat 180:372–387

    Article  PubMed  Google Scholar 

  • Blumstein DT (2006) Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim Behav 71:389–399

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Burton T, Killen SS, Armstrong JD, Metcalfe NB (2011) What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc R Soc Lond B 278:3465–3473

    Article  CAS  Google Scholar 

  • Careau V, Bininda-Emonds ORP, Thomas DW, Réale D, Humphries MM (2009) Exploration strategies map along fast-slow metabolic and life-history continua in muroid rodents. Funct Ecol 23:150–156

    Article  Google Scholar 

  • Careau V, Garland Jr. T (2012) Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool 85:543–571

  • Careau V, Réale D, Humphries MM, Thomas DW (2010) The pace of life under artificial selection: personality, energy expenditure, and longevity are correlated in domestic dogs. Am Nat 175:753–758

    Article  PubMed  Google Scholar 

  • Careau V, Thomas D, Humphries MM, Réale D (2008) Energy metabolism and animal personality. Oikos 117:641–653

    Article  Google Scholar 

  • Careau V, Thomas D, Pelletier F, Turki L, Landry F, Garant D, Réale D (2011) Genetic correlation between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus maniculatus). J Evol Biol 24:2153–2163

    Article  PubMed  CAS  Google Scholar 

  • Clusella Trullas S, van Wyk JH, Spotila JR (2007) Thermal melanism in ectotherms. J Therm Biol 32:235–245

    Article  Google Scholar 

  • Daan S, Masman D, Groenewold A (1990) Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am J Phys 259:R333–R340

    CAS  Google Scholar 

  • Dawkins R (1976) The selfish gene, 2nd edn. Oxford University Press, New York City

  • Derting TL, Compton S (2003) Immune response, not immune maintenance, is energetically costly in wild white-footed mice (Peromyscus leucopus). Physiol Biochem Zool 76:744–752

    Article  PubMed  Google Scholar 

  • Dingemanse NJ, Dochtermann NA (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. J Anim Ecol 82:39–54

    Article  PubMed  Google Scholar 

  • Einum S (2014) Ecological modeling of metabolic rates predicts diverging optima across food abundances. Am Nat 183:410–417

    Article  PubMed  Google Scholar 

  • Gaillard JM, Yoccoz NG, Lebreton JD, Bonenfant C, Devillard S, Loison A, Pontier D, Allaine D (2005) Generation time: a reliable metric to measure life-history variation among mammalian populations. Am Nat 166:119–123

    Article  PubMed  Google Scholar 

  • Gale BH, Johnson JB, Schaalje GB, Belk MC (2013) Effects of predation environment and food availability on somatic growth in the livebearing fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae). Ecol Evol 3:326–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Gifford ME, Clay TA, Careau V (2014) Individual (co) variation in standard metabolic rate, feeding rate, and exploratory behavior in wild-caught semiaquatic salamanders. Physiol Biochem Zool 87:384–396

    Article  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Goodwin NB, Grant A, Perry AL, Dulvy NK, Reynolds JD (2006) Life history correlates of density-dependent recruitment in marine fishes. Can J Fish Aquat Sci 63:494–509

    Article  Google Scholar 

  • Harrison KV, Preisser EL (2016) Dropping behavior in the pea aphid (Hemiptera: Aphididae): how does environmental context affect antipredator responses? J Insect Sci 16:1–5

    Article  CAS  Google Scholar 

  • Höjesjö J, Adriaenssens B, Bohlin T, Jönsson C, Hellström I, Johnsson JI (2011) Behavioural syndromes in juvenile brown trout (Salmo trutta); life history, family variation and performance in the wild. Behav Ecol Sociobiol 65:1801–1810

    Article  Google Scholar 

  • Holling C (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320

    Article  Google Scholar 

  • Houston AI (2010) Evolutionary models of metabolism, behaviour and personality. Philos T Roy Soc B 365:3969–3975

    Article  Google Scholar 

  • Houston AI, McNamara JM (2014) Foraging currencies, metabolism and behavioural routines. J Anim Ecol 83:30–40

    Article  PubMed  Google Scholar 

  • Karels TJ, Byrom AE, Boonstra R, Krebs CJ (2000) The interactive effects of food and predators on reproduction and overwinter survival of arctic ground squirrels. J Anim Ecol 69:235–247

    Article  Google Scholar 

  • Konarzewski M, Diamond J (1995) Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49:1239–1248

    Article  PubMed  Google Scholar 

  • Konarzewski M, Książek A (2013) Determinants of intra-specific variation in basal metabolic rate. J Comp Physiol B 183:27–41

  • Krams I, Kivleniece I, Kuusik A, Krama T, Freeberg TM, Mänd R, Vrublevska J, Rantala MJ, Mänd M (2013) Predation selects for low resting metabolic rate and consistent individual differences in anti-predator behavior in a beetle. Acta Ethol 16:163–172

  • Krams IA, Niemelä PT, Trakimas G, Krams R, Burghardt GM, Krama T, Kuusik A, Mänd M, Rantala MJ, Mänd R, Kekäläinen J, Sirkka I, Luoto S, Kortet R (2017) Metabolic rate associates with, but does not generate covariation between, behaviours in western stutter-trilling crickets, Gryllus integer. Proc R Soc B 284:20162481

  • Krause ET, Liesenjohann T (2012) Predation pressure and food abundance during early life alter risk-taking behaviour and growth of guppies (Poecilia reticulata). Behaviour 149:1–14

    Article  Google Scholar 

  • Le Galliard JF, Paquet M, Cisel M, Montes-Poloni L (2013) Personality and the pace-of-life syndrome: variation and selection on exploration, metabolism and locomotor performances. Funct Ecol 27:136–144

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Løvlie H, Immonen E, Gustavsson E, Kazancioğlu E, Arnqvist G (2014) The influence of mitonuclear genetic variation on personality in seed beetles. Proc R Soc B 281:20141039

    Article  PubMed  Google Scholar 

  • Martel SI, Riquelme SA, Kalergis AM, Bozinovic F (2014) Dietary effect on immunological energetics in mice. J Comp Physiol B 184:937–944

    Article  PubMed  CAS  Google Scholar 

  • Martin LB, Kilvitis HJ, Brace AJ, Cooper L, Haussmann MF, Mutati A, Fasanello V, O'Brien S, Ardia DR (2017) Costs of immunity and their role in the range expansion of the house sparrow in Kenya. J Exp Biol 220:2228–2235

    Article  PubMed  Google Scholar 

  • Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond B 270:153–158

    Article  Google Scholar 

  • Mathot KJ, Dingemanse NJ (2015) Energetics and behavior: unrequited needs and new directions. Trends Ecol Evol 30:199–206

    Article  PubMed  Google Scholar 

  • Mathot KJ, Frankenhuis W (2018) Models of pace-of-life syndromes (POLS): a systematic review. Behav Ecol Sociobiol. https://doi.org/10.1007/s00265-018-2459-9

  • Mathot KJ, Martin K, Kempenaers B, Forstmeier W (2013) Basal metabolic rate can evolve independently of morphological and behavioural traits. Heredity 111:175–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathot KJ, Nicolaus M, Araya-Ajoy YG, Dingemanse NJ, Kempenaers B (2015) Does metabolic rate predict risk-taking behaviour? A field experiment in a wild passerine bird. Funct Ecol 29:239–249

    Article  Google Scholar 

  • McNab BK (1997) On the utility of uniformity in the definition of basal rate of metabolism. Physiol Zool 70:718–720

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (2009) Ecological factors affect the level and scaling of avian BMR. Comp Biochem Physiol A 152:22–45

    Article  CAS  Google Scholar 

  • McNab BK (2015) Behavioral and ecological factors account for variation in the mass-independent energy expenditures of endotherms. J Comp Physiol B 185:1–13

    Article  PubMed  CAS  Google Scholar 

  • Møller AP (2009) Basal metabolic rate and risk-taking behaviour in birds. J Evol Biol 22:2420–2429

    Article  PubMed  Google Scholar 

  • Montiglio P-O, Dammahn M, Messier G, Réale D (2018) The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum. Behav Ecol Sociobiol. (in press)

  • Nespolo RF, Bacigalupe LD, Sabat P, Bozinovic F (2002) Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opossum Thylamys elegans: the role of thermal acclimation. J Exp Biol 205:2697–2703

    PubMed  Google Scholar 

  • Niemelä PT, Vainikka A, Hedrick AV, Kortet R (2012) Integrating behaviour with life history: boldness of the field cricket, Gryllus integer, during ontogeny. Funct Ecol 26:450–456

    Article  Google Scholar 

  • Niemelä PT, Dingemanse NJ, Alioravainen N, Vainikka A, Kortet R (2013) Personality pace-of-life hypothesis: testing genetic associations among personality and life history. Behav Ecol 24:935–941

    Article  Google Scholar 

  • Nilsson JA (2002) Metabolic consequences of hard work. Proc R Soc Lond B 269:1735–1739

    Article  Google Scholar 

  • Oli MK (2004) The fast-slow continuum and mammalian life-history patterns: an empirical evaluation. Basic Appl Ecol 5:449–463

    Article  Google Scholar 

  • Ots I, Kerimov AB, Ivankina EV, Ilyina TA, Hõrak P (2001) Immune challenge affects basal metabolic activity in wintering great tits. Proc R Soc Lond B 268:1175–1181

  • Pap PL, Vágási C, Vincze O, Osváth G, Veres-Szászka J, Czirják G (2015) Physiological pace of life: the link between constitutive immunity, developmental period, and metabolic rate in European birds. Oecologia 177:147–158

  • Rádai Z, Kiss B, Barta Z (2017) Pace of life and behaviour: rapid development is linked with increased activity and voracity in the wolf spider Pardosa agrestis. Anim Behav 126:145–151

    Article  Google Scholar 

  • Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio PO (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos T Roy Soc B 365:4051–4063

    Article  Google Scholar 

  • Richter-Boix A, Llorente GA, Montori A, Garcia J (2007) Tadpole diet selection varies with the ecological context in predictable ways. Basic Appl Ecol 8:464–474

    Article  Google Scholar 

  • Ricklefs RE, Konarzewski M, Daan S (1996) The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. Am Nat 147:1047–1071

    Article  Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Royauté R, Berdal M, Hickey C, Dochtermann NA (2018) Paceless life? A meta-analysis of the pace-of-life syndrome hypothesis. Behav Ecol. https://doi.org/10.1007/s00265-018-2472-z

  • Royauté R, Greenlee K, Baldwin M, Dochtermann NA (2015) Behaviour, metabolism and size: phenotypic modularity or integration in Acheta domesticus? Anim Behav 110:163–169

    Article  Google Scholar 

  • Sæther BE (1987) The influence of body weight on the covariation between reproductive traits in European birds. Oikos 48:79–88

    Article  Google Scholar 

  • Sæther BE, Bakke O (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653

    Article  Google Scholar 

  • Salguero-Gómez R, Jones OR, Jongejans E, Blomberg SP, Hodgson DJ, Mbeau-Ache C, Zuidema PA, de Kroon H, Buckley YM (2016) Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. P Natl Acad Sci USA 113:230–235

    Article  CAS  Google Scholar 

  • Selman C, Lumsden S, Bünger L, Hill WG, Speakman JR (2001) Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J Exp Biol 204:777–784

  • Shearer TA, Pruitt JN (2014) Individual differences in boldness positively correlate with heart rate in orb-weaving spiders of genus Larinioides. Curr Zool 60:387–391

  • Sih A (1987) Predator and prey lifestyles: an evolutionary and ecological overview. In: Predation: direct and indirect impacts on aquatic communities. (Ed. by WC Kerfoot & A Sih), pp 203–224. Hanover, New Hampshire: University Press of New England. 

  • Skelly DK (1994) Activity level and the susceptibility of anuran larvae to predation. Anim Behav 47:465–468

    Article  Google Scholar 

  • Song ZG, Wang DH (2006) Basal metabolic rate and organ size in Brandt’s voles (Lasiopodomys brandtii): effects of photoperiod, temperature and diet quality. Physiol Behav 89:704–710

    Article  PubMed  CAS  Google Scholar 

  • Speakman JR, Krol E, Johnson MS (2004) The functional significance of individual variation in basal metabolic rate. Physiol Biochem Zool 77:900–915

    Article  PubMed  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Tieleman BI, Williams JB, Ricklefs RE, Klasing KC (2005) Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc R Soc Lond B 272:1715–1720

    Article  Google Scholar 

  • Turbill C, Ruf T, Rothmann A, Arnold W (2013) Social dominance is associated with individual differences in heart rate and energetic response to food restriction in female red deer. Physiol Biochem Zool 86:528–537

    Article  PubMed  Google Scholar 

  • van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life-history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • Vehanen T (2003) Adaptive flexibility in the behaviour of juvenile Atlantic salmon: short-term responses to food availability and threat from predation. J Fish Biol 63:1034–1045

    Article  Google Scholar 

  • Versteegh MA, Schwabl I, Jaquier S, Tieleman BI (2012) Do immunological, endocrine and metabolic traits fall on a single pace-of-life axis? Covariation and constraints among physiological systems. J Evol Biol 25:1864–1876

    Article  PubMed  CAS  Google Scholar 

  • Villagra CA, Ramı́rez CC, Niemeyer HM (2002) Antipredator responses of aphids to parasitoids change as a function of aphid physiological state. Anim Behav 64:677–683

    Article  Google Scholar 

  • Wengström N, Wahlqvist F, Näslund J, Aldvén D, Závorka L, Osterling ME, Höjesjö J (2016) Do individual activity patterns of brown trout (Salmo trutta) alter the exposure to parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae? Ethology 122:769–778

  • Werner EE, Anholt BR (1993) Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am Nat 142:242–272

    Article  PubMed  CAS  Google Scholar 

  • White CR, Kearney MR (2013) Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B 183:1–26

    Article  PubMed  CAS  Google Scholar 

  • White SJ, Kells TJ, Wilson AJ (2016) Metabolism, personality and pace of life in the Trinidadian guppy, Poecilia reticulata. Behaviour 153:1517–1543

    Article  Google Scholar 

  • Wolf M, McNamara JM (2012) On the evolution of personalities via frequency-dependent selection. Am Nat 179:679–692

    Article  PubMed  Google Scholar 

  • Zanette L, Smith JNM, van Oort H, Clinchy M (2003) Synergistic effects of food and predators on annual reproductive success in song sparrows. Proc R Soc Lond B 270:799–803

    Article  Google Scholar 

  • Závorka L, Aldvén D, Näslund J, Höjesjö J, Johnsson JI (2015) Linking lab activity with growth and movement in the wild: explaining pace-of-life in a trout stream. Behav Ecol 26:877–884

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Westneat and Crowley labs for comments throughout the process and R. Fox, J. Wright, two anonymous reviewers, and a guest editor for suggestions on the manuscript. This project emerged from a class exercise in a graduate course taught by PHC.

Funding

We received support from the Department of Biology at the University of Kentucky, and DFW received additional support from the US National Science Foundation (IOS1257718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Salzman.

Ethics declarations

This research did not involve either humans or animals.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by P. T. Niemelä

This article is a contribution to the Topical Collection Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life-history – Guest Editors: Melanie Dammhahn, Niels J. Dingemanse, Petri T. Niemelä, Denis Réale

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salzman, T.C., McLaughlin, A.L., Westneat, D.F. et al. Energetic trade-offs and feedbacks between behavior and metabolism influence correlations between pace-of-life attributes. Behav Ecol Sociobiol 72, 54 (2018). https://doi.org/10.1007/s00265-018-2460-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-018-2460-3

Keywords

Navigation