Components of reproductive isolation between the closely related grasshopper species Chorthippus biguttulus and C. mollis

  • Jonas Finck
  • Bernhard Ronacher
Original Article


The formation and maintenance of species in nature is accomplished by the evolution of reproductive isolating mechanisms. To understand patterns of speciation and coexistence between species, it is crucial to obtain a complete synopsis of reproductive isolating barriers. We identified multiple reproductive isolation barriers between two closely related species, Chorthippus biguttulus and Chorthippus mollis, and quantified their respective contributions to isolation. To this end, we produced hybrids and backcrosses in the laboratory to examine reproductive isolation at multiple stages in the life history. The prezygotic barriers, based on chemical and acoustic cues, are currently the strongest impediments to gene flow between C. biguttulus and C. mollis. This indicates an important role for sexual selection in the maintenance of species isolation. However, extrinsic and intrinsic postzygotic isolation barriers also contributed to reproductive isolation. The virtual sterility of F1 hybrid males was based on both the dysfunctionality of their testes and intermediate behavioral mating traits (behavioral sterility). This study demonstrates that a cascade of reproductive isolating mechanisms reduces the gene flow between C. biguttulus and C. mollis. Our results further demonstrate that the courtship display in these species consists of multimodal signals and indicates a key role of chemical cues in reproductive isolation and speciation in grasshoppers.

Significance statement

The identification of species isolating mechanisms is essential for understanding the processes that drive speciation. A profound understanding of reproductive isolating mechanisms and their fitness consequences in a system is required to predict a specific speciation scenario. Members of the grasshopper subfamily Gomphocerinae show an enormous diversity and complexity in courtship behavior, especially in acoustic displays. Here, we demonstrate that non-acoustic and postzygotic isolation mechanisms also strongly contribute to reproductive isolation between the closely related grasshopper species, C. biguttulus and C. mollis. In addition, our results suggest that ongoing gene flow between this species pair is unlikely and that sexual selection plays an important role in the maintenance of species isolation.


Chorthippus Reproductive isolation Speciation Hybridization 



We thank Stefanie Krämer, Ivo Röwekamp, Janine Kuntze, Pauline Sell, and Kolja Haß for their help during the hybridization experiments. In addition, we thank Matthias Hennig for providing LabView scripts to test female preferences and to record male calling songs. The manuscript was improved by valuable comments from Emma Berdan, Michael Reichert, and two referees. This study is part of the GENART project funded by the Leibniz Association (SAW-2012-MfN-3).

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

265_2017_2295_MOESM1_ESM.docx (50 kb)
ESM 1 (DOCX 50 kb)
265_2017_2295_MOESM2_ESM.docx (17 kb)
Table S1 (DOCX 16 kb)
265_2017_2295_MOESM3_ESM.docx (18 kb)
Table S2 (DOCX 17 kb)
265_2017_2295_MOESM4_ESM.docx (20 kb)
Table S3 (DOCX 20 kb)
265_2017_2295_MOESM5_ESM.docx (24 kb)
Table S4 (DOCX 23 kb)
265_2017_2295_MOESM6_ESM.docx (63 kb)
Figure S1 (DOCX 62 kb)
265_2017_2295_MOESM7_ESM.docx (158 kb)
Figure S2 (DOCX 158 kb)
265_2017_2295_MOESM8_ESM.docx (231 kb)
Figure S3 (DOCX 230 kb)


  1. Berdan EL, Mazzoni CJ, Waurick I et al (2015) A population genomic scan in Chorthippus grasshoppers unveils previously unknown phenotypic divergence. Mol Ecol 24:3918–3930. doi: 10.1111/mec.13276 CrossRefPubMedGoogle Scholar
  2. Buckley SH, Tregenza T, Butlin RK (2003) Transitions in cuticular composition across a hybrid zone: historical accident or environmental adaptation? Biol J Linn Soc 78:193–201. doi: 10.1046/j.1095-8312.2003.00147.x CrossRefGoogle Scholar
  3. Butlin RK (1998) What do hybrid zones in general, and the Chorthippus parallelus zone in particular, tell us about speciation. In: Howard D, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 367–378Google Scholar
  4. Butlin RK, Hewitt GM (1986) The response of female grasshoppers to male song. Anim Behav 34:1896–1899CrossRefGoogle Scholar
  5. Butlin RK, Hewitt GM, Webb SF (1985) Sexual selection for intermediate optimum in Chorthippus brunneus (Orthoptera: Acrididae). Anim Behav 33:1281–1292. doi: 10.1016/S0003-3472(85)80188-3
  6. Butlin R, Bridle J, Schluter D (2009) Speciation and patterns of diversity. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Chapman RF, Espelie KE, Sword GA (1995) Use of cuticular lipids in grasshopper taxonomy: a study of variation in Schistocerca shoshone (Thomas). Biochem Syst Ecol 23:383–398. doi: 10.1016/0305-1978(95)00032-P CrossRefGoogle Scholar
  8. Coyne JA, Orr HA (1997) “Patterns of speciation in Drosophila” revisited. Evolution (N Y) 51:295–303Google Scholar
  9. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Sunderland, MAGoogle Scholar
  10. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  11. Doebeli M, Ispolatov I (2010) Complexity and diversity. Science (80- ) 328:494–497. doi: 10.1126/science.1187468
  12. Elsner N, Wasser G (1995) The transition from leg to wing stridulation in two geographically distinct populations of the grasshopper Stenobothrus rubicundus. Naturwissenschaften 82:384–386. doi: 10.1007/s001140050205 Google Scholar
  13. Fife D (2014) fifer A collection of miscellaneous functions. R package version 1Google Scholar
  14. Finck J, Kuntze J, Ronacher B (2016) Chemical cues from females trigger male courtship behaviour in grasshoppers. J Comp Physiol A. doi: 10.1007/s00359-016-1081-4 Google Scholar
  15. Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press Princeton, NJGoogle Scholar
  16. Gibbs A, Mousseau TA (1994) Thermal acclimation and genetic variation in cuticular lipids of the lesser migratory grasshopper (Melanoplus sanguinipes): effects of lipid composition on biophysical properties. Physiol Zool 1523–1543Google Scholar
  17. Gottsberger B, Mayer F (2007) Behavioral sterility of hybrid males in acoustically communicating grasshoppers (Acrididae, Gomphocerinae). J Comp Physiol A 193:703–714. doi: 10.1007/s00359-007-0225-y CrossRefGoogle Scholar
  18. Gourbiere S (2004) How do natural and sexual selection contribute to sympatric speciation? J Evol Biol 17:1297–1309. doi: 10.1111/j.1420-9101.2004.00776.x CrossRefPubMedGoogle Scholar
  19. Heinrich R, Elsner N (1997) Central nervous control of hindleg coordination in stridulating grasshoppers. J Comp Physiol - A 180:257–269. doi: 10.1007/s003590050046 CrossRefGoogle Scholar
  20. Heller K-G, Korsunovskaya O, Ragge DR et al (1998) Check-list of European Orthoptera. Articulata Beiheft 7:1–61Google Scholar
  21. Hewitt GM, Butlin RK, East TM (1987) Testicular dysfunction in hybrids between parapatric subspecies of the grasshopper Chorthippus parallelus. Biol J Linn Soc 31:25–34. doi: 10.1111/j.1095-8312.1987.tb01978.x CrossRefGoogle Scholar
  22. Howard DJ, Berlocher SH (1998) Endless forms: species and speciation. Oxford University Press, LondonGoogle Scholar
  23. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393. doi: 10.1146/annurev.ento.50.071803.130359 CrossRefPubMedGoogle Scholar
  24. Klappert K, Reinhold K (2003) Acoustic preference functions and sexual selection on the male calling song in the grasshopper Chorthippus biguttulus. Anim Behav 65:225–233. doi: 10.1006/anbe.2002.2034 CrossRefGoogle Scholar
  25. Klappert K, Reinhold K (2005) Local adaptation and sexual selection: a reciprocal transfer experiment with the grasshopper Chorthippus biguttulus. Behav Ecol Sociobiol 58:36–43. doi: 10.1007/s00265-004-0902-6 CrossRefGoogle Scholar
  26. Kriegbaum H (1988) Untersuchungen zur Lebensgeschichte von Feldheuschrecken (Orthoptera: Gomphocerinae): Fortpflanzungsverhalten und Fortpflanzungserfolg im natürlichen Habitat. Dissertation. Universität Erlangen-NürnbergGoogle Scholar
  27. Kriegbaum H (1989) Female choice in the grasshopper Chorthippus biguttulus. Naturwissenschaften 76:81–82CrossRefGoogle Scholar
  28. Kriegbaum H, von Helversen O (1992) Influence of male songs on female mating behavior in the grasshopper Chorthippus biguttulus (Orthoptera: Acrididae). Ethology 91:248–254CrossRefGoogle Scholar
  29. Mayer F, Berger D, Gottsberger B, Wolfram S (2010) Non-ecological radiations in acoustically communicating grasshoppers? In: Glaubrecht M (ed) Evolution in action. Springer, Berlin, pp 451–464CrossRefGoogle Scholar
  30. Mayr E (1942) Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press, CambridgeGoogle Scholar
  31. Naisbit RE, Jiggins CD, Mallet J (2001) Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene. Proc R Soc London B Biol Sci 268:1849–1854CrossRefGoogle Scholar
  32. Neems RM, Butlin RK (1995) Divergence in cuticular hydrocarbons between parapatric subspecies of the meadow grasshopper, Chorthippus-Parallelus (Orthoptera, Acrididae). Biol J Linn Soc 54:139–149. doi: 10.1111/j.1095-8312.1995.tb01028.x Google Scholar
  33. Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106CrossRefPubMedGoogle Scholar
  34. Orr HA, Turelli M (2001) The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution (N Y) 55:1085–1094Google Scholar
  35. Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. Trends Ecol Evol 16:364–371. doi: 10.1016/S0169-5347(01)02160-7 CrossRefPubMedGoogle Scholar
  36. Perdeck AC (1958) The isolating value of specific song patterns in two sibling species of grasshoppers (Chorthippus Brunneus Thunb. and C. biguttulus L.) Behaviour 12:1–75CrossRefGoogle Scholar
  37. Picaud F, Bonnet E, Gloaguen V, Petit D (2003) Decision making for food choice by grasshoppers (Orthoptera: Acrididae): comparison between a specialist species on a shrubby legume and three graminivorous species. Environ Entomol 32:680–688. doi: 10.1603/0046-225X-32.3.680 CrossRefGoogle Scholar
  38. Pohlert T (2015) PMCMR: calculate pairwise multiple comparisons of mean rank sumsGoogle Scholar
  39. Proulx SR, Servedio MR (2009) Dissecting selection on female mating preferences during secondary contact. Evolution (N Y) 63:2031–2046. doi: 10.1111/j.1558-5646.2009.00710.x Google Scholar
  40. Ramsey J, Bradshaw HD, Schemske DW (2003) Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534. doi: 10.2307/3448754 CrossRefPubMedGoogle Scholar
  41. Reichert MS, Ronacher B (2015) Noise affects the shape of female preference functions for acoustic signals. Evolution (N Y) 69:381–394. doi: 10.1111/evo.12592 Google Scholar
  42. Riede K (1983) Influence of the courtship song of the acridid grasshopper Gomphocerus rufus L. on the female. Behav Ecol Sociobiol 14:21–27CrossRefGoogle Scholar
  43. Ritchie MG (1990) Are differences in song responsible for assortative mating between subspecies of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae)? Anim Behav 39:685–691. doi: 10.1016/S0003-3472(05)80379-3 CrossRefGoogle Scholar
  44. Ritchie MG (2007) Sexual selection and speciation. Annu Rev Ecol Evol Syst 38:79–102. doi: 10.1146/annurev.ecolsys.38.091206.095733 CrossRefGoogle Scholar
  45. Ritchie MG, Phillips SDF (1998) The genetics of sexual isolation. In: Howard D, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, p 291Google Scholar
  46. Ritchie MG, Butlin RK, Hewitt GM (1992) Fitness consequences of potential assortative mating inside and outside a hybrid zone Chorthippus parallelus (Orthoptera, Acrididae) implications for reinforcement and sexual selection theory. Biol J Linn Soc 45:219–234. doi: 10.1111/j.1095-8312.1992.tb00641.x CrossRefGoogle Scholar
  47. Ronacher B, Stange N (2013) Processing of acoustic signals in grasshoppers—a neuroethological approach towards female choice. J Physiol Paris 107:41–50CrossRefPubMedGoogle Scholar
  48. Safi K, Heinzle J, Reinhold K (2006) Species recognition influences female mate preferences in the common European grasshopper (Chorthippus biguttulus Linnaeus, 1758). Ethology 112:1225–1230. doi: 10.1111/j.1439-0310.2006.01282.x CrossRefGoogle Scholar
  49. Safran RJ, Scordato ESC, Symes LB et al (2013) Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol Evol 28:643–650. doi: 10.1016/j.tree.2013.08.004 CrossRefPubMedGoogle Scholar
  50. Schluter D (2000) The ecology of adaptive radiation. OUP OxfordGoogle Scholar
  51. Schmidt A, Ronacher B, Hennig RM (2008) The role of frequency, phase and time for processing of amplitude modulated signals by grasshoppers. J Comp Physiol A 194:221–233. doi: 10.1007/s00359-007-0295-x CrossRefGoogle Scholar
  52. Seehausen O, Mayhew P, van Alphen J (1999) Evolution of colour patterns in East African cichlid fish. J Evol Biol 12:514–534CrossRefGoogle Scholar
  53. Seehausen O, Butlin RK, Keller I et al (2014) Genomics and the origin of species. Nat Rev Genet 15:176–192. doi: 10.1038/nrg3644 CrossRefPubMedGoogle Scholar
  54. Servedio MR (2015) Geography, assortative mating, and the effects of sexual selection on speciation with gene flow. Evol Appl 9:91–102. doi: 10.1111/eva.12296 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Servedio MR, van Doorn GS, Kopp M et al (2011) Magic traits in speciation: “magic” but not rare? Trends Ecol Evol 26:389–397. doi: 10.1016/j.tree.2011.04.005 CrossRefPubMedGoogle Scholar
  56. Shuker DM, Underwood K, King TM, Butlin RK (2005) Patterns of male sterility in a grasshopper hybrid zone imply accumulation of hybrid incompatibilities without selection. Proc Biol Sci 272:2491–2497. doi: 10.1098/rspb.2005.3242 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97. doi: 10.1038/hdy.2008.55
  58. Smadja CM, Butlin RK (2011) A framework for comparing processes of speciation in the presence of gene flow. Mol Ecol 20:5123–5140. doi: 10.1111/j.1365-294X.2011.05350.x CrossRefPubMedGoogle Scholar
  59. Sobel JM, Chen GF (2014) Unification of methods for estimating the strength of reproductive isolation. Evolution (N Y) 5:1511–1522. doi: 10.1111/evo.12362 Google Scholar
  60. Stratton GE, Uetz GW (1986) The inheritance of courtship behavior and its role as a reproductive isolating mechanism in two species of Schizocosa wolf spiders (Araneae; Lycosidae). Evolution (N Y) 40:129–141Google Scholar
  61. Tregenza T, Buckley SH, Pritchard VL, Butlin RK (2000a) Inter- and intrapopulation effects of sex and age on epicuticular composition of meadow grasshopper, Chorthippus parallelus. J Chem Ecol 26:257–278. doi: 10.1023/A:1005457931869 CrossRefGoogle Scholar
  62. Tregenza T, Pritchard VL, Butlin RK (2000b) Patterns of trait divergence between populations of the meadow grasshopper, Chorthippus parallelus. Evolution 54:574–585CrossRefPubMedGoogle Scholar
  63. van Doorn GS, Edelaar P, Weissing F (2009) On the origin of species by natural and sexual selection. Science (80- ) 326:1704–1707CrossRefGoogle Scholar
  64. Vedenina V, Mugue N (2011) Speciation in gomphocerine grasshoppers: molecular phylogeny versus bioacoustics and courtship behavior. J Orthoptera Res 20:109–125. doi: 10.1665/034.020.0111 CrossRefGoogle Scholar
  65. Vedenina V, Kulygina N, Panyutin A (2007) Isolation mechanisms in closely related grasshopper species Chorthippus albomarginatus and Ch. Oschei (Orthoptera: Acrididae). Entomol Rev 87:263–272. doi: 10.1134/s0013873807030037 CrossRefGoogle Scholar
  66. Virdee SR, Hewitt GM (1992) Postzygotic isolation and Haldane’s rule in a grasshopper. HEREDITY-LONDON 69:527–538CrossRefGoogle Scholar
  67. von Helversen O (1986) Gesang und Balz bei Feldheuschrecken der Chorthippus albomarginatus-Gruppe (Orthoptera: Acrididae). Zoologische Jahrbucher. Abteilung fur Systematik, Okologie und Geographie der TiereGoogle Scholar
  68. von Helversen D (1997) Acoustic communication and orientation in grasshoppers. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 301–341CrossRefGoogle Scholar
  69. von Helversen D, von Helversen O (1975a) Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae) I. Der Gesang von Artbastarden zwischen Chorthippus biguttulus und Ch. mollis. J Comp Physiol - A 104:273–299. doi: 10.1007/bf01379053 CrossRefGoogle Scholar
  70. von Helversen D, von Helversen O (1975b) Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae) II. Das Lautschema von Artbastarden zwischen Chorthippus biguttulus und Ch. mollis. J Comp Physiol - A 104:301–323. doi: 10.1007/BF01379054 CrossRefGoogle Scholar
  71. von Helversen O, von Helversen D (1994) Forces driving coevolution of song and song recognition in grasshoppers. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. Fischer Verlag, Stuttgart, pp 253–284Google Scholar
  72. von Helversen D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol - A 180:373–386. doi: 10.1007/s003590050056 CrossRefGoogle Scholar
  73. Weissing FJ, Edelaar P, van Doorn GS (2011) Adaptive speciation theory: a conceptual review. Behav Ecol Sociobiol 65:461–480. doi: 10.1007/s00265-010-1125-7 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Willemse F, von Helversen O, Odé B (2009) A review of Chorthippus species with angled pronotal lateral keels from Greece with special reference to transitional populations between some Peloponnesean taxa (Orthoptera, Acrididae). Zool Meded 83:319–507Google Scholar
  75. Wirmer A, Faustmann M, Heinrich R (2010) Reproductive behaviour of female Chorthippus biguttulus grasshoppers. J Insect Physiol 56:745–753. doi: 10.1016/j.jinsphys.2010.01.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Behavioural Physiology, Department of BiologyHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany

Personalised recommendations