Effects of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication on cytokine levels in animal models of knee osteoarthritis

Abstract

Background

The aim of this study was to use umbilical cord mesenchymal stem cells (UCMSCs) loaded with graphene oxide (GO) granular lubricant to treat knee osteoarthritis (KOA) animal models and to analyze their effect on cytokine levels in the articular cavity.

Methods

Twenty-four New Zealand rabbit models of KOA were established by the modified Hulth and cartilage injury method, and they were assigned to the blank group, the GO group, the UCMSC group, and the GO + UCMSC group, each group containing six animal models. The GO and UCMSC groups were treated by a single intra-articular injection. The treatment was started one month after surgical modeling, and the observation period was eight weeks. The expression levels of nitric oxide (NO), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), glycosaminoglycan (GAG), and collagen-II (COL-II) in serum and articular fluid after treatment were compared to analyze the efficacy.

Results

The GO granular lubricant caused no significant improvement in the intra-articular environment of the knee joint, and UCMSCs caused a certain degree of improvement in the inflammatory environment. The improvement results of NO, IL-6, TNF-α, GAG, and COL-II were the best in the GO + UCMSC group, but the improvement results of inflammatory cytokine levels in serum and articular fluid were not consistent, especially the differences in NO, IL-6, and TNF-α were greater.

Conclusion

UCMSCs loaded with the GO granular lubricant can reduce the inflammatory level and improve the level of biochemical environment in the articular cavity, and thus promote cartilage repair.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Ko JY, Lee MS, Lian WS, Weng WT, Sun YC, Chen YS, Wang FS (2017) MicroRNA-29a counteracts synovitis in knee osteoarthritis pathogenesis by targeting VEGF. Sci Rep 7(1):1–14. https://doi.org/10.1038/s41598-017-03616-w

    CAS  Article  Google Scholar 

  2. 2.

    Song YZ, Guan J, Wang HJ, Ma W, Li F, Xu F, Lv Z (2016) Possible involvement of serum and synovial fluid resistin in knee osteoarthritis: cartilage damage, clinical, and radiological links. J Clin Lab Anal 30(5):437–443. https://doi.org/10.1002/jcla.21876

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Pan F, Ding C, Winzenberg T, Khan H, Martel-Pelletier J, Pelletier JP, Jones G (2016) The offspring of people with a total knee replacement for severe primary knee osteoarthritis have a higher risk of worsening knee pain over 8 years. Ann Rheum Dis 75(2):368–373. https://doi.org/10.1136/annrheumdis-2014-206005

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Bernardo AS, Hay CW, Docherty K (2008) Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic β cell. Mol Cell Endocrinol 294(1-2):1–9. https://doi.org/10.1016/j.mce.2008.07.006

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Choi S, Kim JH, Ha J, Jeong BI, Jung YC, Lee GS, Kang BJ (2018) Intra-articular injection of alginate-microencapsulated adipose tissue-derived mesenchymal stem cells for the treatment of osteoarthritis in rabbits. Stem Cells Int 2018:1–10. https://doi.org/10.1155/2018/2791632

    CAS  Article  Google Scholar 

  6. 6.

    Riester SM, Denbeigh JM, Lin Y, Jones DL, De Mooij T, Lewallen EA, Camilleri ET (2017) Safety studies for use of adipose tissue-derived mesenchymal stromal/stem cells in a rabbit model for osteoarthritis to support a phase I clinical trial. Stem Cell Transl Med 6(3):910–922. https://doi.org/10.5966/sctm.2016-0097

    CAS  Article  Google Scholar 

  7. 7.

    Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Ra JC (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5):1254–1266. https://doi.org/10.1002/stem.1634

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    De Bari C, Roelofs AJ (2018) Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 40:74–80. https://doi.org/10.1016/j.coph.2018.03.009

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Xing D, Wang Q, Yang Z, Hou Y, Zhang W, Chen Y, Lin J (2018) Mesenchymal stem cells injections for knee osteoarthritis: a systematic overview. Rheumatol Int 38(8):1399–1411. https://doi.org/10.1007/s00296-017-3906-z

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Duymus TM, Mutlu S, Dernek B, Komur B, Aydogmus S, Kesiktas FN (2017) Choice of intra-articular injection in treatment of knee osteoarthritis: platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sport Traumatol Arthrosc 25(2):485–492. https://doi.org/10.1007/s00167-016-4110-5

    Article  Google Scholar 

  11. 11.

    Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, Mobasheri A (2016) Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99(15):69–80. https://doi.org/10.1016/j.ymeth.2015.09.015

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Cutler AJ, Limbani V, Girdlestone J, Navarrete CV (2010) Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 185(11):6617–6623. https://doi.org/10.4049/jimmunol.1002239

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Gossec L, Hawker G, Davis AM, Maillefert JF, Lohmander LS, Altman R, Katz JN (2007) OMERACT/OARSI initiative to define states of severity and indication for joint replacement in hip and knee osteoarthritis. J Rheumatol 34(6):1432–1435

    PubMed  Google Scholar 

  14. 14.

    Sharma AR, Jagga S, Lee SS, Nam JS (2013) Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14(10):19805–19830. https://doi.org/10.3390/ijms141019805

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kyrkos MJ, Papavasiliou KA, Kenanidis E, Tsiridis E, Sayegh FE, Kapetanos GA (2013) Calcitonin delays the progress of early-stage mechanically induced osteoarthritis. In vivo, prospective study. Osteoarthr Cartilage 21(7):973–980. https://doi.org/10.1016/j.joca.2013.03.011

    CAS  Article  Google Scholar 

  16. 16.

    Arunakul M, Tochigi Y, Goetz JE, Diestelmeier BW, Heiner AD, Rudert J, McKinley TO (2013) Replication of chronic abnormal cartilage loading by medial meniscus destabilization for modeling osteoarthritis in the rabbit knee in vivo. J Orthop Res 31(10):1555–1560. https://doi.org/10.1002/jor.22393

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Saito M, Sasho T, Yamaguchi S, Ikegawa N, Akagi R, Muramatsu Y, Nakajima A (2012) Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model. Osteoarthr Cartilage 20(12):1574–1582. https://doi.org/10.1016/j.joca.2012.08.023

    CAS  Article  Google Scholar 

  18. 18.

    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Liu A, Wang P, Zhang J, Ye W, Wei Q (2019) Restoration effect and tribological behavior of hyaluronic acid reinforced with graphene oxide in osteoarthritis. J Nanosci Nanotechnol 19(01):91–97. https://doi.org/10.1166/jnn.2019.16443

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Hulth A, Lindberg L, Telhag H (1970) Experimental osteoarthritis in rabbits: preliminary report. Acta Orthop Scand 41(5):522–530. https://doi.org/10.3109/17453677008991540

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Chew E, Prakash R, Khan W (2017) Mesenchymal stem cells in human meniscal regeneration: a systematic review. Ann Med Surg 24:3–7. https://doi.org/10.1016/j.amsu.2017.09.018

    Article  Google Scholar 

  22. 22.

    Liu SC, Hou ZL, Tang QX, Qiao XF, Yang JH, Ji QH (2018) Effect of knee joint function training on joint functional rehabilitation after knee replacement. Medicine 97(28):e11270. https://doi.org/10.1097/MD.0000000000011270

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Park YB, Ha CW, Kim JA, Han WJ, Rhim JH, Lee HJ, Chung JY (2017) Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthr Cartilage 25(4):570–580. https://doi.org/10.1016/j.joca.2016.10.012

    CAS  Article  Google Scholar 

  24. 24.

    Park YB, Ha CW, Kim JA, Rhim JH, Park YG, Chung JY, Lee HJ (2016) Effect of transplanting various concentrations of a composite of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel on articular cartilage repair in a rabbit model. PLoS One 11(11):e0165446. https://doi.org/10.1371/journal.pone.0165446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (elisa), quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874. https://doi.org/10.1016/0019-2791(71)90454-x

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Livshits G, Zhai G, Hart DJ, Kato BS, Wang H, Williams FM, Spector TD (2009) Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford study. Arthritis Rheumatol 60(7):2037–2045. https://doi.org/10.1002/art.24598

    CAS  Article  Google Scholar 

  27. 27.

    Dias CNK, Vasilceac FA, Durigan JLQ, de Medeiros AI, Mattiello SM (2014) Analysis of local and systemic TNF-α and IL1-α expression in the acute phase of knee osteoarthritis of rats. Cytokine 66(2):164–165. https://doi.org/10.1016/j.cyto.2014.01.006

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Attur MG, Patel RN, Abramson SB, Amin AR (1997) Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheumatol 40(6):1050–1053. https://doi.org/10.1002/art.1780400609

    CAS  Article  Google Scholar 

  29. 29.

    Li YH, Tavallaee G, Tokar T, Nakamura A, Sundararajan K, Weston A, Kapoor M (2016) Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early-and late-stage knee osteoarthritis. Osteoarthr Cartilage 24(9):1577–1586. https://doi.org/10.1016/j.joca.2016.04.019

    CAS  Article  Google Scholar 

  30. 30.

    Giannitti C, De Palma A, Pascarelli NA, Cheleschi S, Giordano N, Galeazzi M, Fioravanti A (2017) Can balneotherapy modify microRNA expression levels in osteoarthritis? A comparative study in patients with knee osteoarthritis. Int J Biometeorol 61(12):2153–2158. https://doi.org/10.1007/s00484-017-1420-3

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank LetPub for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (project name: Research on mechanisms of Kidney and Blood stasis KOA cartilage repair based on 3D GO nanoscale scaffold culture of umbilical cord derived MSC 8187150461).

Author information

Affiliations

Authors

Contributions

WX participated in all experiments and was a major contributor in writing of the manuscript. WC provided theoretical guidance for experiments. LA was the main designer of the experiment. LR was responsible for the supply and detection of UCMSCs. WQ was responsible for providing the GO granular lubricant. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ai-feng Liu.

Ethics declarations

According to the review of the animal experiment center of Tianjin University of Traditional Chinese Medicine, the animal experiment scheme and related materials involved in the project meet the ethical requirements of experimental animal welfare and animal experiment.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Xd., Wan, Xc., Liu, Af. et al. Effects of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication on cytokine levels in animal models of knee osteoarthritis. International Orthopaedics (SICOT) 45, 381–390 (2021). https://doi.org/10.1007/s00264-020-04584-z

Download citation

Keywords

  • Knee osteoarthritis
  • Graphite oxide
  • Umbilical cord mesenchymal stem cell
  • Cartilage
  • Cytokine