Skip to main content

Advertisement

Log in

Bone marrow concentrate and expanded mesenchymal stromal cell surnatants as cell-free approaches for the treatment of osteochondral defects in a preclinical animal model

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the regenerative potential of surnatants (SNs) from bone marrow concentrate (SN-BMC) and expanded mesenchymal stromal cells (SN-MSCs) loaded onto a collagen scaffold (SC) in comparison with cell-based treatments (BMC and MSCs) in an osteochondral (OC) defect model in rabbits.

Methods

OC defects (3 × 5 mm) were created in the rabbit femoral condyles and treated with SC alone or combined with SN-BMC, SN-MSCs, BMC, and MSCs. In control groups, the defects were left untreated. At three and six months, the quality of regenerated tissue was evaluated with macroscopic, histologic, microtomographic, and immunohistochemical assessments. The production of several immunoenzymatic markers was measured in the synovial fluid.

Results

All proposed treatments improved OC regeneration in comparison with untreated and SC-treated defects. Both BMC and MSCs showed a similar healing potential than their respective SNs, with the best performance exerted by BMC as demonstrated with macroscopic and histological scores and type I and II collagen results.

Conclusions

SNs loaded onto SC exerted a positive effect on OC defect regeneration, underlying the biological significance of the trophic factors, thus potentially opening new opportunities for the use of cell-free-based therapies. BMC was confirmed to be the most beneficial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hofer HR, Tuan RS (2016) Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 7(131). https://doi.org/10.1186/s13287-016-0394-0

  2. Cavallo C, Desando G, Ferrari A, Zini N, Mariani E, Grigolo B (2016) Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells. J Biol Regul Homeost Agents 30:409–420

    CAS  PubMed  Google Scholar 

  3. Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N, Fini M (2013) Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev 22:181–192. https://doi.org/10.1089/scd.2012.0373

    Article  CAS  PubMed  Google Scholar 

  4. Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111. https://doi.org/10.1016/j.msec.2016.08.027

    Article  CAS  PubMed  Google Scholar 

  5. Veronesi F, Torricelli P, Borsari V, Tschon M, Rimondini L, Fini M (2011) Mesenchymal stem cells in the aging and osteoporotic population. Crit Rev Eukaryot Gene Expr 21:363–377

    Article  CAS  PubMed  Google Scholar 

  6. Desando G, Giavaresi G, Cavallo C, Bartolotti I, Sartoni F, Nicoli Aldini N, Martini L, Parrilli A, Mariani E, Fini M, Grigolo B (2016) Autologous bone marrow concentrate in a sheep model of osteoarthritis: new perspectives for cartilage and meniscus repair. Tissue Eng Part C Methods 22:608–619. https://doi.org/10.1089/ten.TEC.2016.0033

    Article  CAS  PubMed  Google Scholar 

  7. Veronesi F, Cadossi M, Giavaresi G, Martini L, Setti S, Buda R, Giannini S, Fini M (2015) Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord 16(233). https://doi.org/10.1186/s12891-015-0683-2

  8. Desando G, Bartolotti I, Vannini F, Cavallo C, Castagnini F, Buda R, Giannini S, Mosca M, Mariani E, Grigolo B (2017) Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair: patterns of some catabolic, inflammatory, and pain mediators. Cartilage 8:50–60

    Article  PubMed  Google Scholar 

  9. Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B (2009) One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res 467:3307–3320. https://doi.org/10.1007/s11999-009-0885-8

    Article  PubMed Central  PubMed  Google Scholar 

  10. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  Google Scholar 

  11. Veronesi F, Borsari V, Sartori M, Orciani M, Mattioli-Belmonte M, Fini M (2018) The use of cell conditioned medium for musculoskeletal tissue regeneration. J Cell Physiol 233:4423–4442. https://doi.org/10.1002/jcp.26291

    Article  CAS  PubMed  Google Scholar 

  12. Cavallo C, Desando G, Cattini L, Cavallo M, Buda R, Giannini S, Facchini A, Grigolo B (2013) Bone marrow concentrated cell transplantation: rationale for its use in the treatment of human osteochondral lesions. J Biol Regul Homeost Agents 27:165–175

    CAS  PubMed  Google Scholar 

  13. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    Article  Google Scholar 

  14. O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the bone. J Bone Joint Surg Am 68:1017–1035

    Article  PubMed  Google Scholar 

  15. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  16. Im GI (2017) Clinical use of stem cells in orthopaedics. Eur Cell Mater 33:183–196. https://doi.org/10.22203/eCM.v033a14

    Article  PubMed  Google Scholar 

  17. Welch T, Mandelbaum B, Tom M (2016) Autologous chondrocyte implantation: past, present, and future. Sports Med Arthrosc Rev 24:85–91. https://doi.org/10.1097/JSA.0000000000000115

    Article  PubMed  Google Scholar 

  18. Hochrein A, Zinser W, Spahn G, Angele P, Löer I, Albrecht D, Niemeyer P (2018) What parameters affect knee function in patients with untreated cartilage defects: baseline data from the German Cartilage Registry. Int Orthop. https://doi.org/10.1007/s00264-018-4125-2

  19. Volz M, Schaumburger J, Frick H, Grifka J, Anders S (2017) A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced Chondrogenesis over microfracture at five years. Int Orthop 41(4):797–804. https://doi.org/10.1007/s00264-016-3391-0

    Article  Google Scholar 

  20. Lavoie JR, Rosu-Myles (2013) Uncovering the secretes of mesenchymal stem cells. Biochimie 95:2212–2221. https://doi.org/10.1016/j.biochi.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  21. Sampson S, Botto-van Bemden A, Aufiero D (2013) Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sportsmed 41(3):7–18. https://doi.org/10.3810/psm.2013.09.2022

    Article  PubMed  Google Scholar 

  22. Cicione C, Muinos-Lopez E, Hermida-Gomez T, Fuentes-Boquete I, Diaz-Prado S, Blanco FJ (2016) Alternative protocols to induce chondrogenic differentiation: transforming growth factor-beta superfamily. Cell Tissue Bank 16:195

    Article  CAS  Google Scholar 

  23. Hernigou J, Vertongen P, Chahidi E, Kyriakidis T, Dehoux JP, Crutzen M, Boutry S, Larbanoix L, Houben S, Gaspard N, Koulalis D, Rasschaert J (2018) Effects of press-fit biphasic (collagen and HA/βTCP) scaffold with cell-based therapy on cartilage and subchondral bone repair knee defect in rabbits. Int Orthop 42:1755–1767. https://doi.org/10.1007/s00264-018-3999-3

    Article  PubMed  Google Scholar 

  24. Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering--part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev 19:327–352. https://doi.org/10.1089/ten.TEB.2012.0138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang Q, Zhang H, Gan H, Wang H, Li Q, Wang Z (2018) Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits. Int Orthop 42(7):1437–1448. https://doi.org/10.1007/s00264-018-3800-7

    Article  PubMed  Google Scholar 

  26. Zhang Z, Li L, Yang W, Cao Y, Shi Y, Li X, Zhang Q (2017) The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits. Osteoarthr Cartil 25:309–320. https://doi.org/10.1016/j.joca.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  27. Lin H, Hay E, Latourte A, Funck-Brentano T, Bouaziz W, Ea HK, Khatib AM, Richette P, Cohen-Solal M (2018) Proprotein convertase furin inhibits matrix metalloproteinase 13 in a TGFβ-dependent manner and limits osteoarthritis in mice. Sci Rep 8(10488). https://doi.org/10.1038/s41598-018-28713-2

  28. Chen B, Li Q, Zhao B, Wang Y (2017) Stem cell-derived extracellular vescicles as a novel potential therapeutic tool for tissue repair. Stem Cells Transl Med 6:1753–1758. https://doi.org/10.1002/sctm.16-0477

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Ministry of Health-Ricerca Corrente to the IRCCS Rizzoli Orthopaedic Institute and by a grant from Regione Emilia Romagna: Programma di Ricerca Regione-Università 2010–2012—Strategic Program “Regenerative Medicine of Cartilage and Bone” (PRUa1RI-2012-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melania Maglio.

Ethics declarations

The experimental protocol and surgical procedures were approved by a local Ethical Committee and authorized by the Italian Ministry of Health (Title of the project: One-step surgery with stem cells for the treatment of osteochondral lesions—No. 0017661, approved on May 29, 2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Francesca Veronesi and Giovanna Desando equally contributed to this work.

Electronic supplementary material

ESM 1

(DOCX 11.9 kb)

ESM 2

(DOCX 11.9 kb)

ESM 3

(DOCX 12.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veronesi, F., Desando, G., Fini, M. et al. Bone marrow concentrate and expanded mesenchymal stromal cell surnatants as cell-free approaches for the treatment of osteochondral defects in a preclinical animal model. International Orthopaedics (SICOT) 43, 25–34 (2019). https://doi.org/10.1007/s00264-018-4202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-018-4202-6

Keywords

Navigation