Skip to main content
Log in

In vivo kinematics of gait in posterior-stabilized and bicruciate-stabilized total knee arthroplasties using image-matching techniques

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the effects of two types of total knee arthroplasty (TKA) designs: posterior-stabilized (PS) and bicruciate-stabilized (BCS) on in vivo kinematics during gait.

Methods

Continuous X-ray images of the gait were taken using a flat panel detector for 23 PS and BCS TKAs. We analyzed the tibiofemoral implant flexion angle, anteroposterior (AP) translation, axial rotation, and anterior/posterior cam-post contact using image-matching techniques.

Results

Double knee actions were demonstrated for the PS and BCS design (35 and 61%, respectively, p = 0.08). The tibiofemoral AP positions were significantly more posterior at peak extension (− 1.7 ± 2.2 and 1.0 ± 2.5 mm, respectively, p < 0.01) and anterior at peak flexion (1.3 ± 2.3 and − 0.8 ± 2.8 mm, respectively, p = 0.01) for the PS design than for the BCS design, with a significant difference in AP translation (3.0 ± 3.9 mm anterior and 1.7 ± 2.8 mm posterior, respectively, p < 0.01). Anterior/posterior tibial post contacts were found in 83/4% and 74/30% for the PS and BCS designs, respectively, with a significant difference in posterior contact (p = 0.72/0.04, respectively).

Conclusion

The knee flexion pattern, tibiofemoral AP translation, axial rotation, and cam-post contact during gait varied, depending on the type of implant, the PS and BCS designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scott CEH, Howie CR, MacDonald D, Biant LC (2010) Predicting dissatisfaction following total knee replacement: a prospective study of 1217 patients. J Bone Joint Surg Br 92:1253–1258. https://doi.org/10.1302/0301-620X.92B9.24394.

    Article  CAS  PubMed  Google Scholar 

  2. Weiss JM, Noble PC, Conditt MA, Kohl HW (2002) What functional activities are important to patients with knee replacements? Clin Orthop Relat Res 404:172–188. https://doi.org/10.1097/01.blo.0000036536.46246.d9.

    Article  Google Scholar 

  3. Collins M, Lavigne M, Girard J, Vendittoli PA (2012) Joint perception after hip or knee replacement surgery. Orthop Traumatol Surg Res 98:275–280. https://doi.org/10.1016/j.otsr.2011.08.021

    Article  CAS  PubMed  Google Scholar 

  4. Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80:55–61. https://doi.org/10.1080/17453670902805007.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Meneghini RM, Deckard ER, Ishmael MK, Ziemba-Davis M (2017) A dual-pivot pattern simulating native knee kinematics optimizes functional outcomes after total knee arthroplasty. J Arthroplast 32:3009–3015. https://doi.org/10.1016/j.arth.2017.04.050

    Article  Google Scholar 

  6. Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 64:1328–1335. https://doi.org/10.1007/3-540-27658-0.

    Article  CAS  PubMed  Google Scholar 

  7. Stiehl JB, Dennis DA, Komistek RD, Crane HS (1999) In vivo determination of condylar lift-off and screw-home in a mobile-bearing total knee arthroplasty. J Arthroplast 14:293–299

    Article  CAS  Google Scholar 

  8. Banks SA, Harman MK, Bellemans J, Hodge WA (2003) Making sense of knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am 85A:64–72. https://doi.org/10.1097/00003086-200211000-00046.

    Article  Google Scholar 

  9. Hamai S, Miura H, Higaki H, Shimoto T, Matsuda S, Iwamoto Y (2008) Evaluation of impingement of the anterior tibial post during gait in a posteriorly-stabilised total knee replacement. J Bone Joint Surg Br 90:1180–1185. https://doi.org/10.1302/0301-620X.90B9.20298.

    Article  CAS  PubMed  Google Scholar 

  10. Li GA, Papannagari R, Most E, Park SE, Johnson T, Tanamal L et al (2005) Anterior tibial post impingement in a posterior stabilized total knee arthroplasty. J Orthop Res 23:536–541. https://doi.org/10.1016/j.orhtres.2004.09.005

    Article  PubMed  Google Scholar 

  11. Hanson GR, Suggs JF, Kwon Y-M, Freiberg AA, Li G (2007) In vivo anterior tibial post contact after posterior stabilizing total knee arthroplasty. J Orthop Res 25:1447–1453. https://doi.org/10.1002/jor.20417

    Article  PubMed  Google Scholar 

  12. Shimmin A, Martinez-Martos S, Owens J, Iorgulescu AD, Banks S (2015) Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty. Knee 22:522–526. https://doi.org/10.1016/j.knee.2014.11.011

    Article  PubMed  Google Scholar 

  13. Steinbrück A, Schröder C, Woiczinski M, Fottner A, Pinskerova V, Müller PE et al (2016) Femorotibial kinematics and load patterns after total knee arthroplasty: an in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin Biomech (Bristol, Avon) 33:42–48. https://doi.org/10.1016/j.clinbiomech.2016.02.002

    Article  Google Scholar 

  14. Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y (2015) Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplast 30:864–869. https://doi.org/10.1016/j.arth.2014.12.027

    Article  Google Scholar 

  15. Li C, Hosseini A, Tsai T-Y, Kwon Y-M, Li G (2014) Articular contact kinematics of the knee before and after a cruciate retaining total knee arthroplasty. J Orthop Res 33:349–358. https://doi.org/10.1002/jor.22764

    Article  CAS  PubMed  Google Scholar 

  16. Belvedere C, Leardini A, Catani F, Pianigiani S, Innocenti B (2016) In vivo kinematics of knee replacement during daily living activities: condylar and post-cam contact assessment by three-dimensional fluoroscopy and finite element analyses. J Orthop Res:1–8. https://doi.org/10.1002/jor.23405.

    Article  Google Scholar 

  17. Hamai S, Miura H, Matsuda S, Shimoto T, Higaki H, Iwamoto Y (2010) Contact stress at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. J Bone Joint Surg Am 92:1765–1773. https://doi.org/10.2106/JBJS.I.00479

    Article  PubMed  Google Scholar 

  18. Kuwashima U, Hamai S, Okazaki K, Ikebe S, Higaki H, Mizu-uchi H et al (2016) Contact stress analysis of the anterior tibial post in bi-cruciate stabilized and mobile-bearing posterior stabilized total knee arthroplasty designs. J Mech Behav Biomed Mater 60:460–467. https://doi.org/10.1016/j.jmbbm.2016.03.003

    Article  PubMed  Google Scholar 

  19. Kawahara S, Matsuda S, Okazaki K, Tashiro Y, Mitsuyasu H, Nakahara H et al (2012) Relationship between the tibial anteroposterior axis and the surgical epicondylar axis in varus and valgus knees. Knee Surg Sports Traumatol Arthrosc 20:2077–2081. https://doi.org/10.1007/s00167-011-1826-0

    Article  PubMed  Google Scholar 

  20. Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 press fit condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplast 16:635–640. https://doi.org/10.1054/arth.2001.23569

    Article  CAS  Google Scholar 

  21. Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN (2011) The new Knee Society Knee scoring system. Clin Orthop Relat Res 470:3–19. https://doi.org/10.1007/s11999-011-2135-0

    Article  PubMed Central  Google Scholar 

  22. Nakahara H, Okazaki K, Hamai S, Kawahara S, Higaki H, Mizu-uchi H et al (2015) Rotational alignment of the tibial component affects the kinematic rotation of a weight-bearing knee after total knee arthroplasty. Knee 22:201–205. https://doi.org/10.1016/j.knee.2015.01.002

    Article  PubMed  Google Scholar 

  23. Murakami K, Hamai S, Okazaki K, Ikebe S, Nakahara H, Higaki H et al (2017) Kinematic analysis of stair climbing in rotating platform cruciate-retaining and posterior-stabilized mobile-bearing total knee arthroplasties. Arch Orthop Trauma Surg 137:701–711. https://doi.org/10.1007/s00402-017-2662-6

    Article  PubMed  Google Scholar 

  24. Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877

    Article  CAS  Google Scholar 

  25. Deleanu B, Prejbeanu R, Crisan D et al (2015) Gait characteristics before hardware removal in patients operated upon for tibial plateau fractures. Int Orthop 39:1411–1415. https://doi.org/10.1007/s00264-015-2691-0

    Article  PubMed  Google Scholar 

  26. Wang H, Foster J, Franksen N et al (2017) Gait analysis of patients with an off-the-shelf total knee replacement versus customized bi-compartmental knee replacement. Int Orthop 328:147–146. https://doi.org/10.1007/s00264-017-3622-z

    Article  Google Scholar 

  27. Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138

    Article  Google Scholar 

  28. Matsumoto K, Ogawa H, Yoshioka H, Akiyama H (2017) Postoperative anteroposterior laxity influences subjective outcome after total knee arthroplasty. J Arthroplast 32:1845–1849. https://doi.org/10.1016/j.arth.2016.12.043

    Article  Google Scholar 

  29. Koh YG, Son J, Kwon SK, Kim HJ, Kwon OR, Kang KT (2017) Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 6:557–565. https://doi.org/10.1302/2046-3758.69.BJR-2016-0250.R1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Okamoto S, Mizu-uchi H, Okazaki K, Hamai S, Nakahara H, Iwamoto Y (2015) Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplast 30:1439–1343. https://doi.org/10.1016/j.arth.2015.02.042

    Article  Google Scholar 

  31. Matić A, Petrović Savić S, Ristić B et al (2016) Infrared assessment of knee instability in ACL deficient patients. Int Orthop 40:385–391. https://doi.org/10.1007/s00264-015-2839-y

    Article  PubMed  Google Scholar 

  32. Hoshino Y, Tashman S (2012) Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc 20:1268–1275. https://doi.org/10.1007/s00167-011-1731-6

    Article  PubMed  Google Scholar 

  33. Koo S, Andriacchi TP (2008) The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 41:1269–1273. https://doi.org/10.1016/j.jbiomech.2008.01.013

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Kaibara Morikazu Medical Science Promotion Foundation. The authors thank Junji Kishimoto, a statistician from the Digital Medicine Initiative at Kyushu University, for his valuable comments and suggestions regarding the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hamai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by Institutional Review Board of Kyushu University (IRB number 24-166). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, K., Hamai, S., Okazaki, K. et al. In vivo kinematics of gait in posterior-stabilized and bicruciate-stabilized total knee arthroplasties using image-matching techniques. International Orthopaedics (SICOT) 42, 2573–2581 (2018). https://doi.org/10.1007/s00264-018-3921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-018-3921-z

Keywords

Navigation