A comparative view on the expression patterns of PD-L1 and PD-1 in soft tissue sarcomas

Abstract

Soft tissue sarcomas (STSs) are heterogeneous cancers associated with poor prognosis due to high rates of local recurrence and metastasis. The programmed death receptor ligand 1 (PD-L1) is expressed in several cancers. PD-L1 interacts with its receptor, PD-1, on the surface of tumor-infiltrating lymphocytes (TILs), thereby attenuating anti-cancer immune response. Immune checkpoint inhibitors targeting this interaction have been established as effective anti-cancer drugs. However, studies on the PD-L1 and PD-1 expression status in STS are commonly limited by small sample size, analysis of single STS subtypes, or lack of combinatorial marker assessment. To overcome these limitations, we evaluated the expression patterns of intratumoral PD-L1, the number of TILs, their PD-1 expression, and associations with clinicopathological parameters in a large and comprehensive cohort of 225 samples comprising six STS subtypes. We found that nearly all STS subtypes showed PD-L1 expression on the tumor cells, albeit with a broad range of positivity across subtypes (50% angiosarcomas to 3% synovial sarcomas). Co-expression and correlation analyses uncovered that PD-L1 expression was associated with more PD-1-positive TILs (P < 0.001), higher tumor grading (P = 0.016), and worse patients’ 5-year overall survival (P = 0.028). The results were in line with several publications on single STS subtypes, especially when comparing findings for STS with low and high mutational burden. In sum, the substantial portion of PD-L1 positivity, the co-occurrence of PD-1-positive TILs, and the association of PD-L1 with unfavorable clinical outcome provide rationales for immune checkpoint inhibition in patients with PD-L1-positive STS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Abbreviations

GIST:

Gastrointestinal stromal tumor

HPF:

High-power field

IHC:

Immunohistochemistry

MPNST:

Malignant peripheral nerve sheath tumor

STS:

Soft tissue sarcoma

TIL:

Tumor-infiltrating lymphocyte

TMA:

Tissue microarray

UPS:

Undifferentiated pleomorphic sarcoma

References

  1. 1.

    Fletcher DM, Bridge JA, Hogendoorn PCW, Mertens F (2013) WHO classification of tumours of soft tissue and bone, 4th edn. International Agency of Research on Cancer, Lyon

    Google Scholar 

  2. 2.

    Katz D, Palmerini E, Pollack SM (2018) More than 50 subtypes of soft tissue sarcoma: paving the path for histology-driven treatments. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet. https://doi.org/10.1200/EDBK_205423

    Article  Google Scholar 

  3. 3.

    Baldini EH, Le Cesne A, Trent JC (2018) Neoadjuvant chemotherapy, concurrent chemoradiation, and adjuvant chemotherapy for high-risk extremity soft tissue sarcoma. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet. https://doi.org/10.1200/EDBK_201421

    Article  Google Scholar 

  4. 4.

    PDQ Adult Treatment Editorial Board (2002) Adult Soft Tissue Sarcoma Treatment (PDQ®): Health Professional Version. In: PDQ cancer information summaries. National Cancer Institute (US), Bethesda

  5. 5.

    Daigeler A, Zmarsly I, Hirsch T, Goertz O, Steinau H-U, Lehnhardt M, Harati K (2014) Long-term outcome after local recurrence of soft tissue sarcoma: a retrospective analysis of factors predictive of survival in 135 patients with locally recurrent soft tissue sarcoma. Br J Cancer 110:1456–1464. https://doi.org/10.1038/bjc.2014.21

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Nakamura T, Matsumine A, Matsubara T, Asamuma K, Niimi R, Uchida A, Sudo A (2011) Retrospective analysis of metastatic sarcoma patients. Oncol Lett 2:315–318. https://doi.org/10.3892/ol.2011.238

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Reichardt P (2018) The Story of Imatinib in GIST—a journey through the development of a targeted therapy. Oncol Res Treat 41:472–477. https://doi.org/10.1159/000487511

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. https://doi.org/10.1126/science.aaa8172

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wang X, Teng F, Kong L, Yu J (2016) PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther 9:5023–5039. https://doi.org/10.2147/OTT.S105862

    CAS  Article  Google Scholar 

  10. 10.

    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    CAS  Article  Google Scholar 

  11. 11.

    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez A, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Seront E, Catala G, Dermine A, Lejeune S, Rysselinck S (2018) Immune checkpoint inhibitors as a real hope in advanced urothelial carcinoma. Future Sci OA 4:FSO341. https://doi.org/10.4155/fsoa-2018-0033

    Article  PubMed  Google Scholar 

  13. 13.

    Li J, Gu J (2018) Efficacy and safety of PD-1 inhibitors for treating advanced melanoma: a systematic review and meta-analysis. Immunotherapy 10:1293–1302. https://doi.org/10.2217/imt-2018-0116

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E, Mennecier B, Otterson GA, Campos LT, Gandara DR, Levy BP, Nair SG, Zalcman G, Wolf J, Souquet P-J, Baldini E, Cappuzzo F, Chouaid C, Dowlati A, Sanborn R, Lopez-Chavez A, Grohe C, Huber RM, Harbison CT, Baudelet C, Lestini BJ, Ramalingam SS (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265. https://doi.org/10.1016/S1470-2045(15)70054-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kim C, Kim EK, Jung H, Chon HJ, Han JW, Shin K-H, Hu H, Kim KS, Choi YD, Kim S, Lee YH, Suh J-S, Ahn JB, Chung HC, Noh SH, Rha SY, Kim SH, Kim HS (2016) Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer 16:434. https://doi.org/10.1186/s12885-016-2451-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Honda Y, Otsuka A, Ono S, Yamamoto Y, Seidel JA, Morita S, Hirata M, Kataoka TR, Takenouchi T, Fujii K, Kanekura T, Okubo Y, Takahashi K, Yanagi T, Hoshina D, Hata H, Abe R, Fujimura T, Funakoshi T, Yoshino K, Masuzawa M, Amoh Y, Tanaka R, Fujisawa Y, Honda T, Kabashima K (2017) Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. Oncoimmunology 6:e1253657. https://doi.org/10.1080/2162402X.2016.1253657

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Nowicki TS, Akiyama R, Huang RR, Shintaku IP, Wang X, Tumeh PC, Singh A, Chmielowski B, Denny C, Federman N, Ribas A (2017) Infiltration of CD8 T cells and expression of PD-1 and PD-L1 in synovial sarcoma. Cancer Immunol Res 5:118–126. https://doi.org/10.1158/2326-6066.CIR-16-0148

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Torabi A, Amaya CN, Wians FH, Bryan BA (2017) PD-1 and PD-L1 expression in bone and soft tissue sarcomas. Pathology (Phila) 49:506–513. https://doi.org/10.1016/j.pathol.2017.05.003

    CAS  Article  Google Scholar 

  19. 19.

    Ben-Ami E, Barysauskas CM, Solomon S, Tahlil K, Malley R, Hohos M, Polson K, Loucks M, Severgnini M, Patel T, Cunningham A, Rodig SJ, Hodi FS, Morgan JA, Merriam P, Wagner AJ, Shapiro GI, George S (2017) Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: Results of a phase 2 study. Cancer 123:3285–3290. https://doi.org/10.1002/cncr.30738

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Boxberg M, Steiger K, Lenze U, Rechl H, von Eisenhart-Rothe R, Wörtler K, Weichert W, Langer R, Specht K (2018) PD-L1 and PD-1 and characterization of tumor-infiltrating lymphocytes in high grade sarcomas of soft tissue—prognostic implications and rationale for immunotherapy. Oncoimmunology 7:e1389366. https://doi.org/10.1080/2162402X.2017.1389366

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Park HK, Kim M, Sung M, Lee SE, Kim YJ, Choi Y-L (2018) Status of programmed death-ligand 1 expression in sarcomas. J Transl Med 16:303. https://doi.org/10.1186/s12967-018-1658-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    D’Angelo SP, Mahoney MR, Van Tine BA, Atkins J, Milhem MM, Jahagirdar BN, Antonescu CR, Horvath E, Tap WD, Schwartz GK, Streicher H (2018) A non-comparative multi-center randomized phase II study of nivolumab +/− ipilimumab for patients with metastatic sarcoma (Alliance A091401). Lancet Oncol 19:416–426. https://doi.org/10.1016/S1470-2045(18)30006-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Baldauf MC, Orth MF, Dallmayer M, Marchetto A, Gerke JS, Rubio RA, Kiran MM, Musa J, Knott MML, Ohmura S, Li J, Akpolat N, Akatli AN, Özen Ö, Dirksen U, Hartmann W, de Alava E, Baumhoer D, Sannino G, Kirchner T, Grünewald TGP (2018) Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets. Oncotarget 9:1587–1601. https://doi.org/10.18632/oncotarget.20098

    Article  PubMed  Google Scholar 

  24. 24.

    Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, Kiialainen A, Hanhart J, Schill C, Hess C, Savic Prince S, Wiese M, Lardinois D, Ho P-C, Klein C, Karanikas V, Mertz KD, Schumacher TN, Zippelius A (2018) A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 24:994–1004. https://doi.org/10.1038/s41591-018-0057-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Grywalska E, Sobstyl M, Putowski L, Roliński J (2019) Current possibilities of gynecologic cancer treatment with the use of immune checkpoint inhibitors. Int J Mol Sci. https://doi.org/10.3390/ijms20194705

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Keung EZ, Burgess M, Salazar R, Cuentas EP, Rodrigues-Canales J, Bolejack V, Tine BAV, Schuetze SM, Attia S, Riedel RF, Hu J, Okuno S, Priebat DA, Movva S, Davis LE, Reed DR, Reuben A, Roland CL, Reinke DK, Lazar AJ, Wang W-L, Wargo JA, Tawbi HA (2020) Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-1824

    Article  PubMed  Google Scholar 

  27. 27.

    Ehinger A, Bendahl P-O, Rydén L, Fernö M, Alkner S (2018) Stability of oestrogen and progesterone receptor antigenicity in formalin-fixed paraffin-embedded breast cancer tissue over time. APMIS Acta Pathol Microbiol Immunol Scand 126:746–754. https://doi.org/10.1111/apm.12884

    CAS  Article  Google Scholar 

  28. 28.

    Zhu Z, Jin Z, Zhang M, Tang Y, Yang G, Yuan X, Yao J, Sun D (2017) Prognostic value of programmed death-ligand 1 in sarcoma: a meta-analysis. Oncotarget 8:59570–59580. https://doi.org/10.18632/oncotarget.19168

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Dancsok AR, Setsu N, Gao D, Blay J-Y, Thomas D, Maki RG, Nielsen TO, Demicco EG (2019) Expression of lymphocyte immunoregulatory biomarkers in bone and soft-tissue sarcomas. Mod Pathol. https://doi.org/10.1038/s41379-019-0312-y

    Article  PubMed  Google Scholar 

  30. 30.

    Florou V, Rosenberg AE, Wieder E, Komanduri KV, Kolonias D, Uduman M, Castle JC, Buell JS, Trent JC, Wilky BA (2019) Angiosarcoma patients treated with immune checkpoint inhibitors: a case series of seven patients from a single institution. J Immunother Cancer 7:213. https://doi.org/10.1186/s40425-019-0689-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca, Cancer Genome Atlas Research Network (2017) Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171:950–965. https://doi.org/10.1016/j.cell.2017.10.014(e28)

    CAS  Article  Google Scholar 

  32. 32.

    Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377:2500–2501. https://doi.org/10.1056/NEJMc1713444

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wang X, Li M (2019) Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol 20:1–13. https://doi.org/10.1186/s12865-018-0285-5

    Article  Google Scholar 

  34. 34.

    Li J, Akbani R, Zhao W, Lu Y, Weinstein JN, Mills GB, Liang H (2017) Explore, visualize, and analyze functional cancer proteomic data using the Cancer Proteome Atlas. Cancer Res 77:e51–e54. https://doi.org/10.1158/0008-5472.CAN-17-0369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, Wu K (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17:129. https://doi.org/10.1186/s12943-018-0864-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. https://doi.org/10.1038/nrc.2016.36

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, Rodig SJ, Chapuy B, Ligon AH, Zhu L, Grosso JF, Kim SY, Timmerman JM, Shipp MA, Armand P (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319. https://doi.org/10.1056/NEJMoa1411087

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, Mischel PS, Stokoe D, Pieper RO (2007) Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med 13:84–88. https://doi.org/10.1038/nm1517

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Petitprez F, de Reyniès A, Keung EZ, Chen TW-W, Sun C-M, Calderaro J, Jeng Y-M, Hsiao L-P, Lacroix L, Bougoüin A, Moreira M, Lacroix G, Natario I, Adam J, Lucchesi C, Laizet Y, Toulmonde M, Burgess MA, Bolejack V, Reinke D, Wani KM, Wang W-L, Lazar AJ, Roland CL, Wargo JA, Italiano A, Sautès-Fridman C, Tawbi HA, Fridman WH (2020) B cells are associated with survival and immunotherapy response in sarcoma. Nature 577:556–560. https://doi.org/10.1038/s41586-019-1906-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, Gopalakrishnan V, Xi Y, Zhao H, Amaria RN, Tawbi HA, Cogdill AP, Liu W, LeBleu VS, Kugeratski FG, Patel S, Davies MA, Hwu P, Lee JE, Gershenwald JE, Lucci A, Arora R, Woodman S, Keung EZ, Gaudreau P-O, Reuben A, Spencer CN, Burton EM, Haydu LE, Lazar AJ, Zapassodi R, Hudgens CW, Ledesma DA, Ong S, Bailey M, Warren S, Rao D, Krijgsman O, Rozeman EA, Peeper D, Blank CU, Schumacher TN, Butterfield LH, Zelazowska MA, McBride KM, Kalluri R, Allison J, Petitprez F, Fridman WH, Sautès-Fridman C, Hacohen N, Rezvani K, Sharma P, Tetzlaff MT, Wang L, Wargo JA (2020) B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577:549–555. https://doi.org/10.1038/s41586-019-1922-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bertucci F, Finetti P, Perrot D, Leroux A, Collin F, Le Cesne A, Coindre J-M, Blay J-Y, Birnbaum D, Mamessier E (2017) PDL1 expression is a poor-prognosis factor in soft-tissue sarcomas. Oncoimmunology 6:e1278100. https://doi.org/10.1080/2162402X.2016.1278100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot J-M, Reck M (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol Off J Am Soc Clin Oncol 30:2046–2054. https://doi.org/10.1200/JCO.2011.38.4032

    CAS  Article  Google Scholar 

  43. 43.

    Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E (2017) Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2:e000213. https://doi.org/10.1136/esmoopen-2017-000213

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Maki RG, Jungbluth AA, Gnjatic S, Schwartz GK, D’Adamo DR, Keohan ML, Wagner MJ, Scheu K, Chiu R, Ritter E, Kachel J, Lowy I, Old LJ, Ritter G (2013) A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma 2013:168145. https://doi.org/10.1155/2013/168145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18:10. https://doi.org/10.1186/s12943-018-0928-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Heier, M. Melz, A. Sendelhofert, and S. Stein for excellent technical support.

Funding

The laboratory of TGPG is supported by grants from the ‘Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der LMU München (WiFoMed)’, by LMU Munich’s Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative, the ‘Mehr LEBEN für krebskranke Kinder—Bettina-Bräu-Stiftung’, the Walter Schulz Foundation, the Wilhelm Sander-Foundation (2016.167.1), the Friedrich-Baur foundation, the Matthias-Lackas foundation, the Dr. Leopold und Carmen Ellinger foundation, the Barbara und Hubertus Trettner foundation, the Dr. Rolf M. Schwiete foundation, the Gert & Susanna Mayer foundation, the Deutsche Forschungsgemeinschaft (DFG 391665916), and by the German Cancer Aid (70112257). None of the funders had any influence on study design, data acquisition, interpretation, and paper writing.

Author information

Affiliations

Authors

Contributions

MFO analyzed the data, performed statistical analysis, and wrote the paper together with TGPG. EK and TKn scored the IHC staining of PD-L1 and PD-1. FCA, LRP, and FSW scored Ki-67 staining. VLB, MS, EN, LL, and RI supplied clinical data. AAH carried out statistical analyses. TGPG and TKi provided laboratory infrastructure. TKn conceived the project, drafted the paper, and supervised the analyses together with TGPG. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Thomas G. P. Grünewald or Thomas Knösel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committees of the LMU Munich University hospital (307-16 UE, 25.05.2016) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3329 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orth, M.F., Buecklein, V.L., Kampmann, E. et al. A comparative view on the expression patterns of PD-L1 and PD-1 in soft tissue sarcomas. Cancer Immunol Immunother 69, 1353–1362 (2020). https://doi.org/10.1007/s00262-020-02552-5

Download citation

Keywords

  • PD-L1
  • PD-1
  • Tumor-infiltrating lymphocytes
  • Immune checkpoint inhibition
  • Soft tissue sarcoma