Skip to main content
Log in

T-cell recognition of non-mutated tumor antigens in healthy individuals: connecting endogenous immunity and tumor dormancy

  • Commentary
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

The Original Article was published on 19 February 2019

Abstract

The concept of a dual functional programme of the immune system to destroy malignant cells but also to edit their immunogenic profile, considerably improved our understanding of the process of tumor evolution in the context of a continuum of interactions between tumor cells and immune lymphocytes. Such an endogenous antitumor immunity throughout the period of cancer development established the concept of cancer immunomodulation which is practically based on a process of selection of more clonal tumors which are manageable by the immune system and constitute the equilibrium phase of immunoediting. The duration of this phase is very important, because the immune system keeps the tumor in a dormant state via cell interactions which establish a balanced state of tumor immunosurveillance versus tumor immune evasion. Depending on the quality and quantity of antitumor immune reactivity and the effectiveness of resistance mechanisms employed by the tumor cells to counteract this immune attack, the equilibrium phase may have shorter or longer duration. Notwithstanding its natural course, the equilibrium phase should be considered as a part of tumor evolutionary process guided by genetic as well as epigenetic changes which in turn activate endogenous cellular immunity to certain levels capable of controlling tumor growth rates and maintain tumor dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxevanis CN, Perez SA (2015) Cancer dormancy: a regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines (Basel) 3(3):597–619. https://doi.org/10.3390/vaccines3030597

    Article  CAS  Google Scholar 

  2. Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y, Kato M, Prevost-Blondel A, Chow P, Yang H, Abastado JP (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120(6):2030–2039. https://doi.org/10.1172/JCI42002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manjili MH (2014) The inherent premise of immunotherapy for cancer dormancy. Cancer Res 74(23):6745–6749. https://doi.org/10.1158/0008-5472.CAN-14-2440

    Article  CAS  PubMed  Google Scholar 

  4. Przybyla A, Zhang T, Li R, Roen RD, Mackiewicz A, Lehmann PV (2019) Natural T cell autoreactivity to melanoma antigens: clonally expanded melanoma-antigen specific CD8+ memory T cells can be detected in healthy humans. Cancer Immunol Immunother.https://doi.org/10.1007/s00262-018-02292-7

    Article  PubMed  Google Scholar 

  5. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469. https://doi.org/10.1126/science.aaf1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74. https://doi.org/10.1126/science.aaa4971

    Article  CAS  PubMed  Google Scholar 

  7. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, van Dijk LJ, Behjati S, Hilkmann H, El Atmioui D, Nieuwland M, Stratton MR, Kerkhoven RM, Kesmir C, Haanen JB, Kvistborg P, Schumacher TN (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–442. https://doi.org/10.1200/JCO.2012.47.7521

    Article  PubMed  Google Scholar 

  8. Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki RG, Dupont B, Ritter G, Chen YT, Knuth A, Old LJ (2003) Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci USA 100(15):8862–8867. https://doi.org/10.1073/pnas.1133324100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E, Gallardo HF, Xu Y, Pogoriler E, Terzulli SL, Kuk D, Panageas KS, Ritter G, Sznol M, Halaban R, Jungbluth AA, Allison JP, Old LJ, Wolchok JD, Gnjatic S (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA 108(40):16723–16728. https://doi.org/10.1073/pnas.1110814108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haag GM, Zoernig I, Hassel JC, Halama N, Dick J, Lang N, Podola L, Funk J, Ziegelmeier C, Juenger S, Bucur M, Umansky L, Falk CS, Freitag A, Karapanagiotou-Schenkel I, Beckhove P, Enk A, Jaeger D (2018) Phase II trial of ipilimumab in melanoma patients with preexisting humoural immune response to NY-ESO-1. Eur J Cancer 90:122–129. https://doi.org/10.1016/j.ejca.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  11. Weide B, Zelba H, Derhovanessian E, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EH, de Vries IJ, Sucker A, Schadendorf D, Buttner P, Garbe C, Pawelec G (2012) Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol 30(15):1835–1841. https://doi.org/10.1200/JCO.2011.40.2271

    Article  CAS  PubMed  Google Scholar 

  12. Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci U S A 105(51):20410–20415. https://doi.org/10.1073/pnas.0810114105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576. https://doi.org/10.1038/nature14001

    Article  CAS  PubMed  Google Scholar 

  14. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235. https://doi.org/10.1038/nature14404

    Article  CAS  PubMed  Google Scholar 

  15. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44. https://doi.org/10.1016/j.cell.2016.02.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manjili MH (2017) tumor dormancy and relapse: from a natural byproduct of evolution to a disease state. Cancer Res 77(10):2564–2569. https://doi.org/10.1158/0008-5472.CAN-17-0068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No relevant funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin N. Baxevanis.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper comments on an Original Article entitled Natural T cell autoreactivity to melanoma antigens: clonally expanded melanoma-antigen specific CD8 + memory T cells can be detected in healthy humans by Anna Przybyla et al.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baxevanis, C.N. T-cell recognition of non-mutated tumor antigens in healthy individuals: connecting endogenous immunity and tumor dormancy. Cancer Immunol Immunother 68, 705–707 (2019). https://doi.org/10.1007/s00262-019-02335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02335-7

Keywords

Navigation