Cancer Immunology, Immunotherapy

, Volume 67, Issue 5, pp 739–748 | Cite as

Chronic lymphocytic leukemia cells acquire regulatory B-cell properties in response to TLR9 and CD40 activation

  • Shimrit Ringelstein-Harlev
  • Irit Avivi
  • Mona Fanadka
  • Netanel A. Horowitz
  • Tami Katz
Original Article


Circulating chronic lymphocytic leukemia (CLL) cells share phenotypic features with certain subsets of regulatory B-cells (Bregs). The latter cells have been reported to negatively regulate immune cell responses, mostly by provision of IL-10. The purpose of the current study was to identify and delineate Breg properties of CLL cells. B-cells and T-cells were obtained from the peripheral blood of untreated CLL patients diagnosed according to the 2008 Guidelines of the International Workshop on Chronic Lymphocytic Leukemia. Co-culture assays were used to examine the ability of CLL cells to suppress autologous T-cell immune responses. IL-10 potency of CLL cells was assessed following stimulation with activators of the toll-like receptor 9 (TLR9) or CD40 and was correlated with the inhibitory activity of the cells. TLR9-activated CLL cells were found to increase the frequency of CD4+CD25hiFOXp3+ regulatory T-cells (Tregs) and to inhibit autologous CD4+ T-cell proliferation. This signaling cascade proved to control IL-10 generation in CLL cells, which in turn promoted the inhibition of T-cell proliferation by CLL cells. However, CD40 activation of CLL cells, while exhibiting a similar ability to augment Treg frequency, did not either affect IL-10 generation or T-cell proliferation. In conclusion, CLL cells demonstrate a unique clonal quality of adopting Breg properties which promote modulation of T-cell characteristics. TLR9 appears to be a potent activator of regulatory abilities in CLL cells, possibly contributing to preferential immune escape of TLR9-responsive cells.


Chronic lymphocytic leukemia (CLL) Regulatory B-cells (Bregs) Interleukin 10 (IL-10) Toll-like receptor 9 (TLR9) 



American Society of Hematology




B-cell receptor


Regulatory B-cells


Brilliant violet


CD40 ligand


Carboxyfluorescein diacetate succinimidyl ester


Chronic lymphocytic leukemia


Fluorescence in situ hybridization


Immunoglobulin variable region heavy chain


Interleukin-1 receptor-associated kinase 4




Quantitative polymerase chain reaction


Small interfering RNA


Regulatory T-cells



The authors wish to acknowledge with thanks the assistance of Sonia Kamenetsky in the preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.


  1. 1.
    Scarfo L, Ferreri AJ, Ghia P (2016) Chronic lymphocytic leukaemia. Crit Rev Oncol Hematol 104:169–182CrossRefPubMedGoogle Scholar
  2. 2.
    Jak M, Mous R, Remmerswaal EB, Spijker R, Jaspers A, Yague A, Eldering E, Van Lier RA, Van Oers MH (2009) Enhanced formation and survival of CD4 + CD25hi Foxp3 + T-cells in chronic lymphocytic leukemia. Leuk Lymphoma 50:788–801CrossRefPubMedGoogle Scholar
  3. 3.
    Kiaii S, Choudhury A, Mozaffari F, Kimby E, Osterborg A, Mellstedt H (2005) Signaling molecules and cytokine production in T cells of patients with B-cell chronic lymphocytic leukemia (B-CLL): comparison of indolent and progressive disease. Med Oncol 22:291–302CrossRefPubMedGoogle Scholar
  4. 4.
    Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, Byrd JC, Gribben JG (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ramsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG (2013) Chronic lymphocytic leukemia cells induce defective LFA-1-directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood 121:2704–2714CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Forconi F, Moss P (2015) Perturbation of the normal immune system in patients with CLL. Blood 126:573–581CrossRefPubMedGoogle Scholar
  7. 7.
    Sampalo A, Navas G, Medina F, Segundo C, Camara C, Brieva JA (2000) Chronic lymphocytic leukemia B cells inhibit spontaneous Ig production by autologous bone marrow cells: role of CD95-CD95L interaction. Blood 96:3168–3174PubMedGoogle Scholar
  8. 8.
    DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y, Matsushita T, Matta KM, Chen Y, Venturi GM, Russo G, Gockerman JP, Moore JO, Diehl LF, Volkheimer AD, Friedman DR, Lanasa MC, Hall RP, Tedder TF (2013) Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 27:170–182CrossRefPubMedGoogle Scholar
  9. 9.
    Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117:530–541CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32:129–140CrossRefPubMedGoogle Scholar
  11. 11.
    Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E, Toubi E (2012) Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev 11:670–677CrossRefPubMedGoogle Scholar
  12. 12.
    Drennan S, D’Avola A, Gao Y, Weigel C, Chrysostomou E, Steele AJ, Zenz T, Plass C, Johnson PW, Williams AP, Packham G, Stevenson FK, Oakes CC, Forconi F (2017) IL-10 production by CLL cells is enhanced in the anergic IGHV mutated subset and associates with reduced DNA methylation of the IL10 locus. Leukemia 31:1686–1694CrossRefPubMedGoogle Scholar
  13. 13.
    Alhakeem SS, Sindhava VJ, McKenna MK, Gachuki BW, Byrd JC, Muthusamy N, Bondada S (2015) Role of B cell receptor signaling in IL-10 production by normal and malignant B-1 cells. Ann N Y Acad Sci 1362:239–249CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nordgren TM, Joshi SS (2010) The etiology of chronic lymphocytic leukemia: another look at the relationship between B1 cells and CLL. Open Leuk J 3:69–73Google Scholar
  15. 15.
    Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42:607–612CrossRefPubMedGoogle Scholar
  16. 16.
    Bouaziz JD, Yanaba K, Tedder TF (2008) Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 224:201–214CrossRefPubMedGoogle Scholar
  17. 17.
    Mauri C, Menon M (2017) Human regulatory B cells in health and disease: therapeutic potential. J Clin Invest 127:772–779CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lykken JM, Candando KM, Tedder TF (2015) Regulatory B10 cell development and function. Int Immunol 27:471–477CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Inoue S, Leitner WW, Golding B, Scott D (2006) Inhibitory effects of B cells on antitumor immunity. Cancer Res 66:7741–7747CrossRefPubMedGoogle Scholar
  20. 20.
    Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, Malchinkhuu E, Wersto RP, Biragyn A (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res 71:3505–3515CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Horikawa M, Minard-Colin V, Matsushita T, Tedder TF (2011) Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest 121:4268–4280CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yanaba K, Bouaziz JD, Matsushita T, Tsubata T, Tedder TF (2009) The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J Immunol 182:7459–7472CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950CrossRefPubMedGoogle Scholar
  24. 24.
    Isaza-Correa JM, Liang Z, van den Berg A, Diepstra A, Visser L (2014) Toll-like receptors in the pathogenesis of human B cell malignancies. J Hematol Oncol 7:57CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Siewe B, Pham JT, Cohen M, Hessol NA, Levine A, Martinez-Maza O, Landay A (2015) Dysregulated B-cell TLR2 expression and elevated regulatory B-cell frequency precede the diagnosis of AIDS-related non-Hodgkin lymphoma. AIDS 29:1659–1664CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Purdue MP, Lan Q, Wang SS, Kricker A, Menashe I, Zheng TZ, Hartge P, Grulich AE, Zhang Y, Morton LM, Vajdic CM, Holford TR, Severson RK, Leaderer BP, Cerhan JR, Yeager M, Cozen W, Jacobs K, Davis S, Rothman N, Chanock SJ, Chatterjee N, Armstrong BK (2009) A pooled investigation of Toll-like receptor gene variants and risk of non-Hodgkin lymphoma. Carcinogenesis 30:275–281CrossRefPubMedGoogle Scholar
  27. 27.
    Piper KP, Karanth M, McLarnon A, Kalk E, Khan N, Murray J, Pratt G, Moss PA (2011) Chronic lymphocytic leukaemia cells drive the global CD4 + T cell repertoire towards a regulatory phenotype and leads to the accumulation of CD4 + forkhead box P3 + T cells. Clin Exp Immunol 166:154–163CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Grandjenette C, Kennel A, Faure GC, Bene MC, Feugier P (2007) Expression of functional toll-like receptors by B-chronic lymphocytic leukemia cells. Haematologica 92:1279–1281CrossRefPubMedGoogle Scholar
  29. 29.
    Jahrsdorfer B, Muhlenhoff L, Blackwell SE, Wagner M, Poeck H, Hartmann E, Jox R, Giese T, Emmerich B, Endres S, Weiner GJ, Hartmann G (2005) B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clin Cancer Res 11:1490–1499CrossRefPubMedGoogle Scholar
  30. 30.
    Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111:5446–5456CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ringelstein-Harlev S, Fanadka M, Horowitz NA, Avivi I, Katz T (2016) TLR9-regulated IL10 mediates immune inhibitory activity of chronic lymphocytic leukemia B-cells. Blood 128:4377Google Scholar
  32. 32.
    Drennan S, D’Avola A, Gao Y, Weigel C, Chrysostomou E, Steele AJ, Zenz T, Plass C, Johnson PW, Williams AP, Packham G, Stevenson FK, Oakes CC, Forconi F (2017) IL-10 production by CLL cells is enhanced in the anergic IGHV mutated subset and associates with reduced DNA methylation of the IL10 locus. Leukemia 31:1686–1694CrossRefPubMedGoogle Scholar
  33. 33.
    Cantwell M, Hua T, Pappas J, Kipps TJ (1997) Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med 3:984–989CrossRefPubMedGoogle Scholar
  34. 34.
    Lemoine S, Morva A, Youinou P, Jamin C (2011) Human T cells induce their own regulation through activation of B cells. J Autoimmun 36:228–238CrossRefPubMedGoogle Scholar
  35. 35.
    Nouel A, Pochard P, Simon Q, Segalen I, Le Meur Y, Pers JO, Hillion S (2015) B-Cells induce regulatory T cells through TGF-beta/IDO production in A CTLA-4 dependent manner. J Autoimmun 59:53–60CrossRefPubMedGoogle Scholar
  36. 36.
    Purroy N, Abrisqueta P, Carabia J, Carpio C, Palacio C, Bosch F, Crespo M (2015) Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo. Oncotarget 6:7632–7643CrossRefPubMedGoogle Scholar
  37. 37.
    Ferrer G, Bosch R, Hodgson K, Tejero R, Roue G, Colomer D, Montserrat E, Moreno C (2014) B cell activation through CD40 and IL4R ligation modulates the response of chronic lymphocytic leukaemia cells to BAFF and APRIL. Br J Haematol 164:570–578CrossRefPubMedGoogle Scholar
  38. 38.
    Grzywnowicz M, Zaleska J, Mertens D, Tomczak W, Wlasiuk P, Kosior K, Piechnik A, Bojarska-Junak A, Dmoszynska A, Giannopoulos K (2012) Programmed death-1 and its ligand are novel immunotolerant molecules expressed on leukemic B cells in chronic lymphocytic leukemia. PLoS One 7:e35178CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shimrit Ringelstein-Harlev
    • 1
  • Irit Avivi
    • 3
    • 4
  • Mona Fanadka
    • 2
  • Netanel A. Horowitz
    • 1
    • 2
  • Tami Katz
    • 1
    • 2
  1. 1.Department of Hematology and Bone Marrow TransplantationRambam Health Care CampusHaifaIsrael
  2. 2.Bruce Rappaport Faculty of MedicineTechnion, Israel Institute of TechnologyHaifaIsrael
  3. 3.Department of Hematology and Bone Marrow TransplantationTel Aviv Sourasky Medical CenterTel AvivIsrael
  4. 4.Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations