Identification of tumor-reactive B cells and systemic IgG in breast cancer based on clonal frequency in the sentinel lymph node

  • Jonathan R. McDaniel
  • Stephanie C. Pero
  • William N. Voss
  • Girja S. Shukla
  • Yujing Sun
  • Sebastian Schaetzle
  • Chang-Han Lee
  • Andrew P. Horton
  • Seth Harlow
  • Jimmy Gollihar
  • Jared W. Ellefson
  • Christopher C. Krag
  • Yuri Tanno
  • Nikoletta Sidiropoulos
  • George Georgiou
  • Gregory C. Ippolito
  • David N. Krag
Original Article

Abstract

A better understanding of antitumor immune responses is the key to advancing the field of cancer immunotherapy. Endogenous immunity in cancer patients, such as circulating anticancer antibodies or tumor-reactive B cells, has been historically yet incompletely described. Here, we demonstrate that tumor-draining (sentinel) lymph node (SN) is a rich source for tumor-reactive B cells that give rise to systemic IgG anticancer antibodies circulating in the bloodstream of breast cancer patients. Using a synergistic combination of high-throughput B-cell sequencing and quantitative immunoproteomics, we describe the prospective identification of tumor-reactive SN B cells (based on clonal frequency) and also demonstrate an unequivocal link between affinity-matured expanded B-cell clones in the SN and antitumor IgG in the blood. This technology could facilitate the discovery of antitumor antibody therapeutics and conceivably identify novel tumor antigens. Lastly, these findings highlight the unique and specialized niche the SN can fill in the advancement of cancer immunotherapy.

Keywords

Breast cancer Antibody Sentinel Node Next-Generation Sequencing Repertoire Heavy–light (VH:VL) chain pairing 

Abbreviations

BCR

B-Cell Receptor

CDR

Complementarity-Determining Region

HA

Hemagglutinin

LC–MS/MS

Liquid Chromatography–tandem Mass Spectrometry

MS

Mass Spectrometry

RTX

Reverse Transcription Xenopolymerase

SN

Sentinel Nodes

SPR

Surface Plasmon Resonance

TMB

3,3′,5,5′-TetraMethylBenzidine

TNBC

Triple Negative Breast Cancer

VH

Variable Heavy chain

VL

Variable Light chain

Notes

Acknowledgements

The authors thank the patients for their willingness to participate, the UVM Larner College of Medicine Microscopy Imaging Center for tissue imaging; the Genome Sequencing and Analysis Facility at the University of Texas at Austin for performing Illumina next-generation sequencing; the clinical coordinators in the Vermont Cancer Center for consenting patients and collecting the tissues for this study; Andrew D. Ellington (UT Austin) for a generous gift of RTX polymerase; and members of our laboratories for critical reading of the manuscript.

Author Contributions

Conception and design: JRM, SCP, GSS, NS, GG, GCI, DNK, development of methodology: JRM, SCP, WNV, GSS, JG, JWE. Acquisition of data: JRM, SCP, WNV, YS, SS, C-HL, CCK, YT, and SH. Acquired and managed patients: DNK and SH. Analysis and interpretation of data: JRM, SCP, WNV, GSS, YS, SS, C-HL, APH, GCI, DNK. Writing, review, and/or revision of the manuscript: JRM, SCP, WNV, GSS, SS, C-HL, APH, GG, GCI, DNK. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): SCP, WNV, JG, JWE, YT, GG, DNK. Study Supervision: JRM, SCP, GG, GCI, DNK.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval and ethical standards

This study was approved by the Institutional Review Board at the University of Vermont, CHRMS# M12-009, PI: David N. Krag.

Informed consent

Informed Consent was received from each of the patients involved in this study.

Supplementary material

262_2018_2123_MOESM1_ESM.pdf (908 kb)
Supplementary material 1 (PDF 907 KB)

References

  1. 1.
    Disis ML, Stanton SE (2018) Immunotherapy in breast cancer: an introduction. Breast 37:196–199.  https://doi.org/10.1016/j.breast.2017.01.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Kroemer G, Senovilla L, Galluzzi L et al (2015) Natural and therapy-induced immunosurveillance in breast cancer. Nat Med 21:1128–1138.  https://doi.org/10.1038/nm.3944 CrossRefPubMedGoogle Scholar
  3. 3.
    Adams S (2016) Enlisting the immune system to cure breast cancer—a recipe for success. JAMA Oncol 2:25–27.  https://doi.org/10.1001/jamaoncol.2015.3236 CrossRefPubMedGoogle Scholar
  4. 4.
    Nathan MR, Schmid P (2018) The emerging world of breast cancer immunotherapy. Breast 37:200–206.  https://doi.org/10.1016/j.breast.2017.05.013 CrossRefPubMedGoogle Scholar
  5. 5.
    Krag DN (1998) Minimal access surgery for staging regional lymph nodes: the sentinel-node concept. Curr Probl Surg 35:951–1016CrossRefPubMedGoogle Scholar
  6. 6.
    Krag DN, Anderson SJ, Julian TB et al (2007) Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial. Lancet Oncol 8:881–888.  https://doi.org/10.1016/S1470-2045(07)70278-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Devarakonda CV, Kita D, Phoenix KN, Claffey KP (2015) Patient-derived heavy chain antibody targets cell surface HSP90 on breast tumors. BMC Cancer 15:614.  https://doi.org/10.1186/s12885-015-1608-z CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Novinger LJ, Ashikaga T, Krag DN (2015) Identification of tumor-binding scFv derived from clonally related B cells in tumor and lymph node of a patient with breast cancer. Cancer Immunol Immunother CII 64:29–39.  https://doi.org/10.1007/s00262-014-1612-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Williams LD, Ofek G, Schätzle S et al (2017) Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci Immunol.  https://doi.org/10.1126/sciimmunol.aal2200 Google Scholar
  10. 10.
    Lavinder JJ, Horton AP, Georgiou G, Ippolito GC (2015) Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin Chem Biol 24:112–120.  https://doi.org/10.1016/j.cbpa.2014.11.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Wine Y, Horton AP, Ippolito GC, Georgiou G (2015) Serology in the 21st century: the molecular-level analysis of the serum antibody repertoire. Curr Opin Immunol 35:89–97.  https://doi.org/10.1016/j.coi.2015.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen YT, Scanlan MJ, Sahin U et al (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337.  https://doi.org/10.1158/1078-0432.CCR-09-0737 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hamaï A, Duperrier-Amouriaux K, Pignon P et al (2011) Antibody responses to NY-ESO-1 in primary breast cancer identify a subtype target for immunotherapy. PLoS One 6:e21129.  https://doi.org/10.1371/journal.pone.0021129 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Theurillat J-P, Ingold F, Frei C et al (2007) NY-ESO-1 protein expression in primary breast carcinoma and metastases: correlation with CD8+ T-cell and CD79a+ plasmacytic/B-cell infiltration. Int J Cancer 120:2411–2417.  https://doi.org/10.1002/ijc.22376 CrossRefPubMedGoogle Scholar
  16. 16.
    Yuan J, Adamow M, Ginsberg BA et al (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A 108:16723–16728.  https://doi.org/10.1073/pnas.1110814108 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Krag DN, Weaver DL, Alex JC, Fairbank JT (1993) Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol 2:335–339CrossRefPubMedGoogle Scholar
  18. 18.
    Krag DN, Anderson SJ, Julian TB et al (2010) Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 11:927–933.  https://doi.org/10.1016/S1470-2045(10)70207-2 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McDaniel JR, DeKosky BJ, Tanno H et al (2016) Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes. Nat Protoc 11:429–442.  https://doi.org/10.1038/nprot.2016.024 CrossRefPubMedGoogle Scholar
  20. 20.
    DeKosky BJ, Kojima T, Rodin A et al (2015) In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat Med 21:86–91.  https://doi.org/10.1038/nm.3743 CrossRefPubMedGoogle Scholar
  21. 21.
    Ellefson JW, Gollihar J, Shroff R et al (2016) Synthetic evolutionary origin of a proofreading reverse transcriptase. Science 352:1590–1593.  https://doi.org/10.1126/science.aaf5409 CrossRefPubMedGoogle Scholar
  22. 22.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bolotin DA, Poslavsky S, Mitrophanov I et al (2015) MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods 12:380–381.  https://doi.org/10.1038/nmeth.3364 CrossRefPubMedGoogle Scholar
  24. 24.
    Plotly Technologies Inc (2017) Collaborative data science. Plotly Technologies Inc. https://www.plot.ly. Accessed 24 Jul 2017
  25. 25.
    Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620.  https://doi.org/10.1093/bioinformatics/btt593 CrossRefPubMedGoogle Scholar
  26. 26.
    Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee J, Boutz DR, Chromikova V et al (2016) Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat Med 22:1456–1464.  https://doi.org/10.1038/nm.4224 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee C-H, Romain G, Yan W et al (2017) IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol 18:889–898.  https://doi.org/10.1038/ni.3770 CrossRefPubMedGoogle Scholar
  30. 30.
    Tsai-Turton M, Santillan A, Lu D et al (2009) p53 autoantibodies, cytokine levels and ovarian carcinogenesis. Gynecol Oncol 114:12–17.  https://doi.org/10.1016/j.ygyno.2009.03.028 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Boutz DR, Horton AP, Wine Y et al (2014) Proteomic identification of monoclonal antibodies from serum. Anal Chem 86:4758–4766.  https://doi.org/10.1021/ac4037679 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lavinder JJ, Wine Y, Giesecke C et al (2014) Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci USA 111:2259–2264.  https://doi.org/10.1073/pnas.1317793111 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wine Y, Boutz DR, Lavinder JJ et al (2013) Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc Natl Acad Sci USA 110:2993–2998.  https://doi.org/10.1073/pnas.1213737110 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rodriguez-Pinto D, Sparkowski J, Keough MP et al (2009) Identification of novel tumor antigens with patient-derived immune-selected antibodies. Cancer Immunol Immunother 58:221–234.  https://doi.org/10.1007/s00262-008-0543-0 CrossRefPubMedGoogle Scholar
  35. 35.
    Coronella JA, Spier C, Welch M et al (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169:1829–1836CrossRefPubMedGoogle Scholar
  36. 36.
    Spitzer MH, Carmi Y, Reticker-Flynn NE et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168:487–502.e15.  https://doi.org/10.1016/j.cell.2016.12.022 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45CrossRefPubMedGoogle Scholar
  38. 38.
    Ippolito GC, Schelonka RL, Zemlin M et al (2006) Forced usage of positively charged amino acids in immunoglobulin CDR-H3 impairs B cell development and antibody production. J Exp Med 203:1567–1578.  https://doi.org/10.1084/jem.20052217 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Page DB, Yuan J, Redmond D et al (2016) Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res 4:835–844.  https://doi.org/10.1158/2326-6066.CIR-16-0013 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pasetto A, Alena G, Robbins PF et al (2016) Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol Res. 4(9):734–743.  https://doi.org/10.1158/2326-6066.CIR-16-0001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ademuyiwa FO, Bshara W, Attwood K et al (2012) NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer. PLoS One 7:e38783.  https://doi.org/10.1371/journal.pone.0038783 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rapoport AP, Stadtmauer EA, Binder-Scholl GK et al (2015) NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 21:914–921.  https://doi.org/10.1038/nm.3910 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Robbins PF, Kassim SH, Tran TLN et al (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T cell receptor: Long term follow up and correlates with response. Clin Cancer Res 21:1019–1027.  https://doi.org/10.1158/1078-0432.CCR-14-2708 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jonathan R. McDaniel
    • 2
  • Stephanie C. Pero
    • 1
  • William N. Voss
    • 2
  • Girja S. Shukla
    • 1
  • Yujing Sun
    • 1
  • Sebastian Schaetzle
    • 2
  • Chang-Han Lee
    • 2
  • Andrew P. Horton
    • 2
  • Seth Harlow
    • 1
  • Jimmy Gollihar
    • 4
  • Jared W. Ellefson
    • 4
  • Christopher C. Krag
    • 1
  • Yuri Tanno
    • 2
  • Nikoletta Sidiropoulos
    • 3
  • George Georgiou
    • 2
    • 4
  • Gregory C. Ippolito
    • 4
  • David N. Krag
    • 1
  1. 1.Department of Surgery, Vermont Cancer CenterUniversity of Vermont Larner College of MedicineBurlingtonUSA
  2. 2.Department of Chemical EngineeringThe University of Texas at AustinAustinUSA
  3. 3.Department of Pathology and Laboratory MedicineUniversity of Vermont Larner College of MedicineBurlingtonUSA
  4. 4.Department of Molecular BiosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations