A novel biologic platform elicits profound T cell costimulatory activity and antitumor immunity in mice

  • Joseph M. Ryan
  • Payal Mittal
  • Antoine Menoret
  • Julia Svedova
  • Jeffrey S. Wasser
  • Adam J. Adler
  • Anthony T. Vella
Original Article

Abstract

Combination immunotherapies utilizing complementary modalities that target distinct tumor attributes or immunosuppressive mechanisms, or engage different arms of the antitumor immune response, can elicit greater therapeutic efficacy than the component monotherapies. Increasing the number of agents included in a therapeutic cocktail can further increase efficacy, however, this approach poses numerous challenges for clinical translation. Here, a novel platform to simplify combination immunotherapy by covalently linking immunotherapeutic agonists to the costimulatory receptors CD134 and CD137 into a single heterodimeric drug, “OrthomAb”, is shown. This reagent not only retains costimulatory T cell activity, but also elicits unique T cell functions that are not programmed by either individual agonist, and preferentially expands effector T cells over Tregs. Finally, in an aggressive melanoma model OrthomAb elicits better therapeutic efficacy compared to the unlinked agonists. This demonstration that two drugs can be combined into one provides a framework for distilling complex combination drug cocktails into simpler delivery platforms.

Keywords

Cancer immunotherapy Costimulation CD134 OX40 CD137 4-1BB 

Abbreviations

Eomes

Eomesodermin

GzmB

Granzyme B

MTz

Methyltetrazine-PEG5-NHS ester

TCO

Trans-cyclooctene-PEG4-NHS ester

Notes

Author contributions

ATV, AJA and JMR were involved in the study conception and design. JMR, AJA, PM, AM and JS were involved in data acquisition and analysis. AJA, ATV and JMR drafted the manuscript. All authors contributed intellectually during the course of the research as well as in critical revision of the manuscript.

Compliance with ethical standards

Conflict of interest

Adam J. Adler and Anthony T. Vella have filed a patent application on OrthomAb. All other authors declare that they have no conflict of interest.

Ethical approval

All experiments involving mice were conducted in accordance with the ethical standards established by the National Institutes of Health and UConn Health, and were approved by the UConn Health Institutional Animal Care and Use Committee (IACUC).

Supplementary material

262_2018_2116_MOESM1_ESM.pdf (284 kb)
Supplementary material 1 (PDF 284 KB)

References

  1. 1.
    Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, Levy R (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90(6):2188–2195PubMedGoogle Scholar
  2. 2.
    McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833.  https://doi.org/10.1200/JCO.1998.16.8.2825CrossRefPubMedGoogle Scholar
  3. 3.
    Stolz C, Schuler M (2009) Molecular mechanisms of resistance to Rituximab and pharmacologic strategies for its circumvention. Leuk Lymphoma 50(6):873–885.  https://doi.org/10.1080/10428190902878471CrossRefPubMedGoogle Scholar
  4. 4.
    Gubin MM, Artyomov MN, Mardis ER, Schreiber RD (2015) Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125(9):3413–3421.  https://doi.org/10.1172/JCI80008CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tran E, Robbins PF, Rosenberg SA (2017) ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18(3):255–262.  https://doi.org/10.1038/ni.3682CrossRefPubMedGoogle Scholar
  6. 6.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949.  https://doi.org/10.1038/nm1093CrossRefPubMedGoogle Scholar
  7. 7.
    Adler AJ (2007) Mechanisms of T Cell tolerance and suppression in cancer mediated by tumor-associated antigens and hormones. Curr Cancer Drug Targets 7:3–14CrossRefPubMedGoogle Scholar
  8. 8.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268.  https://doi.org/10.1038/nri3175CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465CrossRefPubMedGoogle Scholar
  10. 10.
    Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, Freeman GJ, Sharpe AH (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214(4):895–904.  https://doi.org/10.1084/jem.20160801CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723.  https://doi.org/10.1056/NEJMoa1003466CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454.  https://doi.org/10.1056/NEJMoa1200690CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465.  https://doi.org/10.1056/NEJMoa1200694CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61.  https://doi.org/10.1126/science.aaa8172CrossRefPubMedGoogle Scholar
  15. 15.
    Lines JL, Sempere LF, Broughton T, Wang L, Noelle R (2014) VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res 2(6):510–517.  https://doi.org/10.1158/2326-6066.CIR-14-0072CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44(5):989–1004.  https://doi.org/10.1016/j.immuni.2016.05.001CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, Lu Z, Fein S, Schoenberger S, Levitsky HI (1999) Conversion of tumor-specific CD4 + T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5(7):780–787CrossRefPubMedGoogle Scholar
  18. 18.
    Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ, Offringa R, Toes RE (1999) CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 5(7):774–779CrossRefPubMedGoogle Scholar
  19. 19.
    Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD (2011) Science gone translational: the OX40 agonist story. Immunol Rev 244(1):218–231.  https://doi.org/10.1111/j.1600-065X.2011.01069.xCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I (2010) Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol 37(5):508–516.  https://doi.org/10.1053/j.seminoncol.2010.09.008CrossRefPubMedGoogle Scholar
  21. 21.
    Cohen AD, Diab A, Perales MA, Wolchok JD, Rizzuto G, Merghoub T, Huggins D, Liu C, Turk MJ, Restifo NP, Sakaguchi S, Houghton AN (2006) Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res 66(9):4904–4912.  https://doi.org/10.1158/0008-5472.CAN-05-2813CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Roberts DJ, Franklin NA, Kingeter LM, Yagita H, Tutt AL, Glennie MJ, Bullock TN (2010) Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8(+) T cells. J Immunother 33(8):769–779.  https://doi.org/10.1097/CJI.0b013e3181ee238fCrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Egen JG, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16(1):23–35CrossRefPubMedGoogle Scholar
  24. 24.
    Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44(5):955–972.  https://doi.org/10.1016/j.immuni.2016.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34.  https://doi.org/10.1056/NEJMoa1504030CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee SJ, Myers L, Muralimohan G, Dai J, Qiao Y, Li Z, Mittler RS, Vella AT (2004) 4–1BB and OX40 dual costimulation synergistically stimulate primary specific CD8 T cells for robust effector function. J Immunol 173(5):3002–3012CrossRefPubMedGoogle Scholar
  27. 27.
    Lee SJ, Rossi RJ, Lee SK, Croft M, Kwon BS, Mittler RS, Vella AT (2007) CD134 costimulation couples the CD137 pathway to induce production of supereffector CD8 T cells that become IL-7 dependent. J Immunol 179(4):2203–2214CrossRefPubMedGoogle Scholar
  28. 28.
    Cuadros C, Dominguez AL, Lollini PL, Croft M, Mittler RS, Borgstrom P, Lustgarten J (2005) Vaccination with dendritic cells pulsed with apoptotic tumors in combination with anti-OX40 and anti-4–1BB monoclonal antibodies induces T cell-mediated protective immunity in Her-2/neu transgenic mice. Int J Cancer 116(6):934–943CrossRefPubMedGoogle Scholar
  29. 29.
    Gray JC, French RR, James S, Al-Shamkhani A, Johnson PW, Glennie MJ (2008) Optimising anti-tumour CD8 T-cell responses using combinations of immunomodulatory antibodies. Eur J Immunol 38(9):2499–2511CrossRefPubMedGoogle Scholar
  30. 30.
    Qui HZ, Hagymasi AT, Bandyopadhyay S, St Rose MC, Ramanarasimhaiah R, Menoret A, Mittler RS, Gordon SM, Reiner SL, Vella AT, Adler AJ (2011) CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J Immunol 187(7):3555–3564.  https://doi.org/10.4049/jimmunol.1101244CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mittal P, St Rose MC, Wang X, Ryan JM, Wasser JS, Vella AT, Adler AJ (2015) Tumor-Unrelated CD4 T cell help augments CD134 plus CD137 dual costimulation tumor therapy. J Immunol 195(12):5816–5826.  https://doi.org/10.4049/jimmunol.1502032CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Verweij J, de Jonge M, Eskens F, Sleijfer S (2012) Moving molecular targeted drug therapy towards personalized medicine: issues related to clinical trial design. Mol Oncol 6(2):196–203.  https://doi.org/10.1016/j.molonc.2012.01.009CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS, Gejyo F, Okumura K, Yagita H, Smyth MJ (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12(6):693–698CrossRefPubMedGoogle Scholar
  34. 34.
    Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF, Engreitz JM, Williams RT, Rakhra K, Zhang MH, Rothschilds AM, Kumari S, Kelly RL, Kwan BH, Abraham W, Hu K, Mehta NK, Kauke MJ, Suh H, Cochran JR, Lauffenburger DA, Wittrup KD, Irvine DJ (2016) Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 22(12):1402–1410.  https://doi.org/10.1038/nm.4200CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021CrossRefPubMedGoogle Scholar
  36. 36.
    Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S, Sugamura K, Ishii N (2004) Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 172(6):3580–3589CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang P, Gao F, Wang Q, Wang X, Zhu F, Ma C, Sun W, Zhang L (2007) Agonistic anti-4–1BB antibody promotes the expansion of natural regulatory T cells while maintaining Foxp3 expression. Scand J Immunol 66(4):435–440.  https://doi.org/10.1111/j.1365-3083.2007.01994.xCrossRefPubMedGoogle Scholar
  38. 38.
    Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, Killeen N, Ishii N, Chang Li X (2007) OX40 costimulation turns off Foxp3 + Tregs. Blood 110(7):2501–2510CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Akhmetzyanova I, Zelinskyy G, Littwitz-Salomon E, Malyshkina A, Dietze KK, Streeck H, Brandau S, Dittmer U (2016) CD137 agonist therapy can reprogram regulatory T cells into cytotoxic CD4 + T cells with antitumor activity. J Immunol 196(1):484–492.  https://doi.org/10.4049/jimmunol.1403039CrossRefPubMedGoogle Scholar
  40. 40.
    Duan F, Simeone S, Wu R, Grady J, Mandoiu I, Srivastava PK (2012) Area under the curve as a tool to measure kinetics of tumor growth in experimental animals. J Immunol Methods 382(1–2):224–228.  https://doi.org/10.1016/j.jim.2012.06.005CrossRefPubMedGoogle Scholar
  41. 41.
    Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, Banica M, DiCioccio CB, Gross DA, Mao CA, Shen H, Cereb N, Yang SY, Lindsten T, Rossant J, Hunter CA, Reiner SL (2003) Control of effector CD8 + T cell function by the transcription factor Eomesodermin. Science 302(5647):1041–1043CrossRefPubMedGoogle Scholar
  42. 42.
    Chames P, Baty D (2009) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs. 1 (6):539–547Google Scholar
  43. 43.
    Lin G, Wang J, Lao X, Wang J, Li L, Li S, Zhang J, Dong Y, Chang AE, Li Q, Li S (2012) Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J Immunother 35(4):337–343.  https://doi.org/10.1097/CJI.0b013e318255ada3CrossRefPubMedGoogle Scholar
  44. 44.
    Sharma MD, Huang L, Choi JH, Lee EJ, Wilson JM, Lemos H, Pan F, Blazar BR, Pardoll DM, Mellor AL, Shi H, Munn DH (2013) An inherently bifunctional subset of Foxp3 + T helper cells is controlled by the transcription factor eos. Immunity 38(5):998–1012.  https://doi.org/10.1016/j.immuni.2013.01.013CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N, Yu S, Yan X, Lee HK, Pasman L, Brodsky I, Yordy B, Zhao H, Bruning J, Medzhitov R (2014) T cell-intrinsic role of IL-6 signaling in primary and memory responses. Elife 3:e01949.  https://doi.org/10.7554/eLife.01949CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bhanumathy KK, Zhang B, Ahmed KA, Qureshi M, Xie Y, Tao M, Tan X, Xiang J (2014) Transgene IL-6 enhances DC-stimulated CTL responses by counteracting CD4 + 25 + Foxp3 + regulatory T cell suppression via IL-6-induced Foxp3 downregulation. Int J Mol Sci 15(4):5508–5521.  https://doi.org/10.3390/ijms15045508CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Immunology, School of MedicineUConn HealthFarmingtonUSA
  2. 2.Department of Medicine, School of MedicineUConn HealthFarmingtonUSA

Personalised recommendations