Advertisement

Cancer Immunology, Immunotherapy

, Volume 66, Issue 9, pp 1163–1173 | Cite as

HPV16 E7 DNA tattooing: safety, immunogenicity, and clinical response in patients with HPV-positive vulvar intraepithelial neoplasia

  • Sanne Samuels
  • A. Marijne Heeren
  • Henry J. M. A. A. Zijlmans
  • Marij J. P. Welters
  • Joost H. van den Berg
  • Daisy Philips
  • Pia Kvistborg
  • Ilina Ehsan
  • Suzy M. E. Scholl
  • Bastiaan Nuijen
  • Ton N. M. Schumacher
  • Marc van Beurden
  • Ekaterina S. Jordanova
  • John B. A. G. Haanen
  • Sjoerd H. van der Burg
  • Gemma G. KenterEmail author
Original Article

Abstract

Background

Usual type vulvar intraepithelial neoplasia (uVIN) is caused by HPV, predominantly type 16. Several forms of HPV immunotherapy have been studied, however, clinical results could be improved. A novel intradermal administration route, termed DNA tattooing, is superior in animal models, and was tested for the first time in humans with a HPV16 E7 DNA vaccine (TTFC-E7SH).

Methods

The trial was designed to test safety, immunogenicity, and clinical response of TTFC-E7SH in twelve HPV16+ uVIN patients. Patients received six vaccinations via DNA tattooing. The first six patients received 0.2 mg TTFC-E7SH and the next six 2 mg TTFC-E7SH. Vaccine-specific T-cell immunity was evaluated by IFNγ-ELISPOT and multiparametric flow cytometry.

Results

Only grade I-II adverse events were observed upon TTFC-E7SH vaccination. The ELISPOT analysis showed in 4/12 patients a response to the peptide pool containing shuffled E7 peptides. Multiparametric flow cytometry showed low CD4+ and/or CD8+ T-cell responses as measured by increased expression of PD-1 (4/12 in both), CTLA-4 (2/12 and 3/12), CD107a (5/12 and 4/12), or the production of IFNγ (2/12 and 1/12), IL-2 (3/12 and 4/12), TNFα (2/12 and 1/12), and MIP1β (3/12 and 6/12). At 3 months follow-up, no clinical response was observed in any of the twelve vaccinated patients.

Conclusion

DNA tattoo vaccination was shown to be safe. A low vaccine-induced immune response and no clinical response were observed in uVIN patients after TTFC-E7SH DNA tattoo vaccination. Therefore, a new phase I/II trial with an improved DNA vaccine format is currently in development for patients with uVIN.

Keywords

VIN HPV Immunotherapy DNA vaccine Immunogenicity Safety 

Abbreviations

CTCAE

Common terminology criteria for adverse events

sig-HELP-E6SH-kdel

Vaccine encoding the fusion protein of the carrier sequence sig-HELP-kdel and the shuffled version of the HPV16 E6 oncoprotein

sig-HELP-E7SH-kdel

Vaccine encoding the fusion protein of the carrier sequence sig-HELP-kdel and the shuffled version of the HPV16 E7 oncoprotein

SLP

Synthetic long peptide

TTFC

Tetanus toxin fragment C

TTFC-E7SH

Vaccine encoding the fusion protein of TTFC and a shuffled variant of HPV16 E7

uVIN

Usual type vulvar intraepithelial neoplasia

VIN

Vulvar intraepithelial neoplasia

Notes

Acknowledgements

We thank Dr. Freek Groenman of the Netherlands Cancer Institute – Antoni van Leeuwenhoek hospital (NKI-AVL, Amsterdam, the Netherlands) for including patients. We also like to thank the Rational molecular Assessment Innovative Drug selection (RAIDs) consortium (http://www.raids-fp7.eu). This trial is part of the RAIDs project and received funding from the European Union’s Seventh Program for Research, Technological Development, and Demonstration (Grant No. 304810).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

262_2017_2006_MOESM1_ESM.pdf (6.1 mb)
Supplementary material 1 (PDF 6268 kb)

References

  1. 1.
    Sideri M, Jones RW, Wilkinson EJ, Preti M, Heller DS, Scurry J, Haefner H, Neill S (2005) Squamous vulvar intraepithelial neoplasia: 2004 modified terminology, ISSVD Vulvar Oncology Subcommittee. J Reprod Med 50(11):807–810PubMedGoogle Scholar
  2. 2.
    Buscema J, Naghashfar Z, Sawada E, Daniel R, Woodruff JD, Shah K (1988) The predominance of human papillomavirus type 16 in vulvar neoplasia. Obstet Gynecol 71(4):601–606PubMedGoogle Scholar
  3. 3.
    Hording U, Junge J, Poulsen H, Lundvall F (1995) Vulvar intraepithelial neoplasia III: a viral disease of undetermined progressive potential. Gynecol Oncol 56(2):276–279CrossRefPubMedGoogle Scholar
  4. 4.
    Serrano B, de Sanjose S, Tous S, Quiros B, Munoz N, Bosch X, Alemany L (2015) Human papillomavirus genotype attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female anogenital lesions. Eur J Cancer 51(13):1732–1741CrossRefPubMedGoogle Scholar
  5. 5.
    Smith JS, Backes DM, Hoots BE, Kurman RJ, Pimenta JM (2009) Human papillomavirus type-distribution in vulvar and vaginal cancers and their associated precursors. Obstet Gynecol 113(4):917–924CrossRefPubMedGoogle Scholar
  6. 6.
    van Beurden M, ten Kate FJ, Smits HL, Berkhout RJ, de Craen AJ, van der Vange N, Lammes FB, ter Schegget J (1995) Multifocal vulvar intraepithelial neoplasia grade III and multicentric lower genital tract neoplasia is associated with transcriptionally active human papillomavirus. Cancer 75(12):2879–2884CrossRefPubMedGoogle Scholar
  7. 7.
    Kuhn L, Sun XW, Wright TC Jr (1999) Human immunodeficiency virus infection and female lower genital tract malignancy. Curr Opin Obstet Gynecol 11(1):35–39CrossRefPubMedGoogle Scholar
  8. 8.
    van de Nieuwenhof HP, van der Avoort IA, de Hullu JA (2008) Review of squamous premalignant vulvar lesions. Crit Rev Oncol Hematol 68(2):131–156CrossRefPubMedGoogle Scholar
  9. 9.
    Jones RW, Rowan DM, Stewart AW (2005) Vulvar intraepithelial neoplasia: aspects of the natural history and outcome in 405 women. Obstet Gynecol 106(6):1319–1326CrossRefPubMedGoogle Scholar
  10. 10.
    van Seters M, van Beurden M, de Craen AJ (2005) Is the assumed natural history of vulvar intraepithelial neoplasia III based on enough evidence? A systematic review of 3322 published patients. Gynecol Oncol 97(2):645–651CrossRefPubMedGoogle Scholar
  11. 11.
    Andreasson B, Bock JE (1985) Intraepithelial neoplasia in the vulvar region. Gynecol Oncol 21(3):300–305CrossRefPubMedGoogle Scholar
  12. 12.
    Rettenmaier MA, Berman ML, DiSaia PJ (1987) Skinning vulvectomy for the treatment of multifocal vulvar intraepithelial neoplasia. Obstet Gynecol 69(2):247–250PubMedGoogle Scholar
  13. 13.
    Sykes P, Smith N, McCormick P, Frizelle FA (2002) High-grade vulval intraepithelial neoplasia (VIN 3): a retrospective analysis of patient characteristics, management, outcome and relationship to squamous cell carcinoma of the vulva 1989–1999. Aust N Z J Obstet Gynaecol 42(1):69–74CrossRefPubMedGoogle Scholar
  14. 14.
    Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, Kitchener HC (2010) Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer 102(7):1129–1136CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, van der Burg SH, Melief CJ (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361(19):1838–1847CrossRefPubMedGoogle Scholar
  16. 16.
    van Poelgeest MI, Welters MJ, Vermeij R, Stynenbosch LF, Loof NM, Berends-van der Meer DM, Lowik MJ, Hamming IL, van Esch EM, Hellebrekers BW, van Beurden M, Schreuder HW, Kagie MJ, Trimbos JB, Fathers LM, Daemen T, Hollema H, Valentijn AR, Oostendorp J, Oude Elberink JH, Fleuren GJ, Bosse T, Kenter GG, Stijnen T, Nijman HW, Melief CJ, van der Burg SH (2016) Vaccination against Oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res 22(10):2342–2350CrossRefPubMedGoogle Scholar
  17. 17.
    Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ, van der Hulst JM, Valentijn AR, Fathers LM, Drijfhout JW, Franken KL, Oostendorp J, Fleuren GJ, Melief CJ, van der Burg SH (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107 (26):11895–11899Google Scholar
  18. 18.
    Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, Brown AS, Marcozzi-Pierce K, Shah D, Slager AM, Sylvester AJ, Khan A, Broderick KE, Juba RJ, Herring TA, Boyer J, Lee J, Sardesai NY, Weiner DB, Bagarazzi ML (2015) Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386(10008):2078–2088CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120CrossRefPubMedGoogle Scholar
  20. 20.
    Bins AD, Jorritsma A, Wolkers MC, Hung CF, Wu TC, Schumacher TN, Haanen JB (2005) A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med 11(8):899–904CrossRefPubMedGoogle Scholar
  21. 21.
    Verstrepen BE, Bins AD, Rollier CS, Mooij P, Koopman G, Sheppard NC, Sattentau Q, Wagner R, Wolf H, Schumacher TN, Heeney JL, Haanen JB (2008) Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine 26(26):3346–3351CrossRefPubMedGoogle Scholar
  22. 22.
    van den Berg JH, Nujien B, Beijnen JH, Vincent A, van Tinteren H, Kluge J, Woerdeman LA, Hennink WE, Storm G, Schumacher TN, Haanen JB (2009) Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 20(3):181–189. doi: 10.1089/hgt.2008.073 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oosterhuis K, Ohlschlager P, van den Berg JH, Toebes M, Gomez R, Schumacher TN, Haanen JB (2011) Preclinical development of highly effective and safe DNA vaccines directed against HPV 16 E6 and E7. Int J Cancer 129(2):397–406CrossRefPubMedGoogle Scholar
  24. 24.
    Henken FE, Oosterhuis K, Ohlschlager P, Bosch L, Hooijberg E, Haanen JB, Steenbergen RD (2012) Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7. Vaccine 30(28):4259–4266CrossRefPubMedGoogle Scholar
  25. 25.
    Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15(1):361–367CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Przybylowski M, Bartido S, Borquez-Ojeda O, Sadelain M, Riviere I (2007) Production of clinical-grade plasmid DNA for human Phase I clinical trials and large animal clinical studies. Vaccine 25(27):5013–5024CrossRefPubMedGoogle Scholar
  27. 27.
    Quaak SG, van den Berg JH, Toebes M, Schumacher TN, Haanen JB, Beijnen JH, Nuijen B (2008) GMP production of pDERMATT for vaccination against melanoma in a phase I clinical trial. Eur J Pharm Biopharm 70(2):429–438CrossRefPubMedGoogle Scholar
  28. 28.
    Urthaler J, Buchinger W, Necina R (2005) Improved downstream process for the production of plasmid DNA for gene therapy. Acta Biochim Pol 52(3):703–711PubMedGoogle Scholar
  29. 29.
    van Poelgeest MI, Welters MJ, van Esch EM, Stynenbosch LF, Kerpershoek G, van Persijn van Meerten EL, van den Hende M, Lowik MJ, Berends-van der Meer DM, Fathers LM, Valentijn AR, Oostendorp J, Fleuren GJ, Melief CJ, Kenter GG, van der Burg SH (2013) HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med 11:88Google Scholar
  30. 30.
    Oosterhuis K, Aleyd E, Vrijland K, Schumacher TN, Haanen JB (2012) Rational design of DNA vaccines for the induction of human papillomavirus type 16 E6- and E7-specific cytotoxic T-cell responses. Hum Gene Ther 23(12):1301–1312CrossRefPubMedGoogle Scholar
  31. 31.
    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438CrossRefPubMedGoogle Scholar
  32. 32.
    Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hokey DA, Johnson FB, Smith J, Weber JL, Yan J, Hirao L, Boyer JD, Lewis MG, Makedonas G, Betts MR, Weiner DB (2008) Activation drives PD-1 expression during vaccine-specific proliferation and following lentiviral infection in macaques. Eur J Immunol 38(5):1435–1445CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    van der Burg SH, Piersma SJ, de Jong A, van der Hulst JM, Kwappenberg KM, van den Hende M, Welters MJ, Van Rood JJ, Fleuren GJ, Melief CJ, Kenter GG, Offringa R (2007) Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci USA 104(29):12087–12092CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A, Godkin A, Gouttefangeas C, de Gruijl TD, Koenen HJ, Scheffold A, Shevach EM, Staats J, Tasken K, Whiteside TL, Kroep JR, Welters MJ, van der Burg SH (2015) Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother 64(10):1271–1286CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sanne Samuels
    • 1
  • A. Marijne Heeren
    • 2
  • Henry J. M. A. A. Zijlmans
    • 1
  • Marij J. P. Welters
    • 3
  • Joost H. van den Berg
    • 4
  • Daisy Philips
    • 5
  • Pia Kvistborg
    • 5
  • Ilina Ehsan
    • 3
  • Suzy M. E. Scholl
    • 6
  • Bastiaan Nuijen
    • 7
  • Ton N. M. Schumacher
    • 5
  • Marc van Beurden
    • 1
  • Ekaterina S. Jordanova
    • 1
  • John B. A. G. Haanen
    • 5
    • 8
  • Sjoerd H. van der Burg
    • 3
  • Gemma G. Kenter
    • 1
    Email author
  1. 1.Department of GynecologyCenter for Gynecologic Oncology AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Medical OncologyVU University Medical Center-Cancer Center AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Clinical OncologyLeiden University Medical CenterLeidenThe Netherlands
  4. 4.Amsterdam Biotherapeutics Unit (AmBTU)AmsterdamThe Netherlands
  5. 5.Department of ImmunologyNetherlands Cancer Institute, Antoni van LeeuwenhoekAmsterdamThe Netherlands
  6. 6.Department of Medical OncologyInstitut CurieParisFrance
  7. 7.Department of Pharmacy and PharmacologyNetherlands Cancer Institute, Antoni van LeeuwenhoekAmsterdamThe Netherlands
  8. 8.Department of Medical OncologyNetherlands Cancer Institute, Antoni van LeeuwenhoekAmsterdamThe Netherlands

Personalised recommendations