Skip to main content
Log in

The immunoregulatory role of type I and type II NKT cells in cancer and other diseases

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17:3520–3526. doi:10.1158/1078-0432.CCR-10-3126

    PubMed  Google Scholar 

  2. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767. doi:10.1002/ijc.25429

    CAS  PubMed  Google Scholar 

  5. Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281. doi:10.1016/j.semcancer.2012.01.011

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu D, Song L, Wei J et al (2012) IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J Clin Invest 122:2221–2233. doi:10.1172/JCI59535

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Frentsch M, Stark R, Matzmohr N et al (2013) CD40L expression permits CD8 + T cells to execute immunologic helper functions. Blood 122:405–412. doi:10.1182/blood-2013-02-483586

    CAS  PubMed  Google Scholar 

  9. Mussai F, De Santo C, Cerundolo V (2012) Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic opportunities. J Immunother 35:449–459. doi:10.1097/CJI.0b013e31825be926

    CAS  PubMed  Google Scholar 

  10. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115. doi:10.1111/imm.12036

    CAS  PubMed  Google Scholar 

  11. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    CAS  PubMed  Google Scholar 

  12. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513

    CAS  PubMed  Google Scholar 

  13. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    CAS  PubMed  Google Scholar 

  14. Bai L, Picard D, Anderson B, Chaudhary V, Luoma A, Jabri B, Adams EJ, Savage PB, Bendelac A (2012) The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vdelta1 TCR. Eur J Immunol 42:2505–2510. doi:10.1002/eji.201242531

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417

    CAS  PubMed  Google Scholar 

  16. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701

    CAS  PubMed  Google Scholar 

  17. Girardi E, Zajonc DM (2012) Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 250:167–179. doi:10.1111/j.1600-065X.2012.01166.x

    PubMed  PubMed Central  Google Scholar 

  18. Cox D, Fox L, Tian R, Bardet W, Skaley M, Mojsilovic D, Gumperz J, Hildebrand W (2009) Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 4:e5325. doi:10.1371/journal.pone.0005325

    PubMed  PubMed Central  Google Scholar 

  19. Yuan W, Kang SJ, Evans JE, Cresswell P (2009) Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J Immunol 182:4784–4791. doi:10.4049/jimmunol.0803981

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei B, Speak AO, Shepherd D, Butters T, Cerundolo V, Platt FM, Kronenberg M (2011) Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J Immunol 186:1348–1360. doi:10.4049/jimmunol.1001008

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gumperz JE, Roy C, Makowska A et al (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221

    CAS  PubMed  Google Scholar 

  22. Fox LM, Cox DG, Lockridge JL et al (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228

    PubMed  PubMed Central  Google Scholar 

  23. Zhou D, Mattner J, Cantu C 3rd et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    CAS  PubMed  Google Scholar 

  24. Christiansen D, Milland J, Mouhtouris E, Vaughan H, Pellicci DG, McConville MJ, Godfrey DI, Sandrin MS (2008) Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 6:e172. doi:10.1371/journal.pbio.0060172

    PubMed  PubMed Central  Google Scholar 

  25. Porubsky S, Speak AO, Luckow B, Cerundolo V, Platt FM, Grone HJ (2007) Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci USA 104:5977–5982

    CAS  PubMed  Google Scholar 

  26. Porubsky S, Speak AO, Salio M et al (2012) Globosides but not isoglobosides can impact the development of invariant NKT cells and their interaction with dendritic cells. J Immunol 189:3007–3017. doi:10.4049/jimmunol.1201483

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brennan PJ, Tatituri RV, Brigl M et al (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol 12:1203–1211. doi:10.1038/ni.2143

    Google Scholar 

  28. Rhost S, Lofbom L, Rynmark BM, Pei B, Mansson JE, Teneberg S, Blomqvist M, Cardell SL (2012) Identification of novel glycolipid ligands activating a sulfatide-reactive, CD1d-restricted, type II natural killer T lymphocyte. Eur J Immunol 42:2851–2860. doi:10.1002/eji.201142350

    CAS  PubMed  Google Scholar 

  29. Tatituri RV, Watts GF, Bhowruth V et al (2013) Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci USA 110:1827–1832. doi:10.1073/pnas.1220601110

    CAS  PubMed  Google Scholar 

  30. Dieude M, Striegl H, Tyznik AJ, Wang J, Behar SM, Piccirillo CA, Levine JS, Zajonc DM, Rauch J (2011) Cardiolipin binds to CD1d and stimulates CD1d-restricted gammadelta T cells in the normal murine repertoire. J Immunol 186:4771–4781. doi:10.4049/jimmunol.1000921

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Webb TJ, Li X, Giuntoli RL 2nd et al (2012) Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res 72:3744–3752. doi:10.1158/0008-5472.CAN-11-2695

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Roberts DD (1986) Sulfatide-binding proteins. Chem Phys Lipids 42:173–183

    CAS  PubMed  Google Scholar 

  35. Blomqvist M, Rhost S, Teneberg S, Lofbom L, Osterbye T, Brigl M, Mansson JE, Cardell SL (2009) Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur J Immunol 39:1726–1735

    CAS  PubMed  Google Scholar 

  36. Chang DH, Deng H, Matthews P et al (2008) Inflammation associated lysophospholipids as ligands for CD1d restricted T cells in human cancer. Blood 112:1308–1316

    CAS  PubMed  Google Scholar 

  37. Salio M, Cerundolo V (2009) Linking inflammation to natural killer T cell activation. PLoS Biol 7:e1000226. doi:10.1371/journal.pbio.1000226

    PubMed  PubMed Central  Google Scholar 

  38. Darmoise A, Teneberg S, Bouzonville L, Brady RO, Beck M, Kaufmann SH, Winau F (2010) Lysosomal alpha-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity 33:216–228. doi:10.1016/j.immuni.2010.08.003

    CAS  PubMed  Google Scholar 

  39. Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N, Besra GS, Platt FM, Cerundolo V (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 104:20490–20495

    CAS  PubMed  Google Scholar 

  40. Paget C, Chow MT, Duret H, Mattarollo SR, Smyth MJ (2012) Role of gammadelta T cells in alpha-galactosylceramide-mediated immunity. J Immunol 188:3928–3939. doi:10.4049/jimmunol.1103582

    CAS  PubMed  Google Scholar 

  41. Taraban VY, Martin S, Attfield KE, Glennie MJ, Elliott T, Elewaut D, Van Calenbergh S, Linclau B, Al-Shamkhani A (2008) Invariant NKT cells promote CD8 + cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J Immunol 180:4615–4620

    CAS  PubMed  Google Scholar 

  42. Semmling V, Lukacs-Kornek V, Thaiss CA et al (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol. doi:10.1038/ni.1848

    PubMed  Google Scholar 

  43. Fujii S, Shimizu K, Hemmi H, Steinman RM (2007) Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220:183–198

    CAS  PubMed  Google Scholar 

  44. Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC et al (2002) Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 195:617–624

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Silk JD, Hermans IF, Gileadi U et al (2004) Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114:1800–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204:2641–2653

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Motohashi S, Okamoto Y, Nakayama T (2011) Clinical Trials of Invariant Natural Killer T cell-Based Immunotherapy for Cancer. In: Terabe M, Berzofsky JA (eds) Natural killer T cells: balancing the regulation of tumor immunity. Springer, LLC, pp 169–184

    Google Scholar 

  48. Schneiders FL, Scheper RJ, Bontkes HJ, von Blomberg BM, van den Eertwegh AJ, de Gruijl TD, van der Vliet HJ (2011) Clinical trials with a-galactosylceramide (KRN7000) in advanced cancer. In: Terabe M, Berzofsky JA (eds) Natural killer T cells: balancing the regulation of tumor immunity. Springer, LLC, pp 169–184

    Google Scholar 

  49. Ishikawa A, Motohashi S, Ishikawa E et al (2005) A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11:1910–1917

    CAS  PubMed  Google Scholar 

  50. Nieda M, Okai M, Tazbirkova A et al (2004) Therapeutic activation of Valpha24 + Vbeta11 + NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389

    CAS  PubMed  Google Scholar 

  51. Uchida T, Horiguchi S, Tanaka Y, Yamamoto H, Kunii N, Motohashi S, Taniguchi M, Nakayama T, Okamoto Y (2008) Phase I study of alpha-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57:337–345

    CAS  PubMed  Google Scholar 

  52. O’Konek JJ, Illarionov P, Khursigara DS et al (2011) Mouse and human iNKT cell agonist beta-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 121:683–694. doi:10.1172/JCI42314

    PubMed  PubMed Central  Google Scholar 

  53. O’Konek JJ, Kato S, Takao S, Izhak L, Xia Z, Illarionov P, Besra GS, Terabe M, Berzosfky JA (2013) Beta-mannosylceramide activates type I natural killer T cells to induce tumor immunity without inducing long-term functional anergy. Clin Cancer Res 19:4404–4411. doi:10.1158/1078-0432.CCR-12-2169

    PubMed  Google Scholar 

  54. Mattarollo SR, West AC, Steegh K et al (2012) NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood 120:3019–3029. doi:10.1182/blood-2012-04-426643

    CAS  PubMed  Google Scholar 

  55. Smyth MJ, Thia KY, Street SE et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI, Smyth MJ (2009) Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113:6382–6385

    CAS  PubMed  Google Scholar 

  57. Bellone M, Ceccon M, Grioni M, Jachetti E, Calcinotto A, Napolitano A, Freschi M, Casorati G, Dellabona P (2010) iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS ONE 5:e8646

    PubMed  PubMed Central  Google Scholar 

  58. Crowe NY, Smyth MJ, Godfrey DI (2002) A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196:119–127

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, Krasovsky J (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197:1667–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, Hayakawa Y, Godfrey DI, Smyth MJ (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709

    CAS  PubMed  Google Scholar 

  62. Molling JW, Langius JA, Langendijk JA, Leemans CR, Bontkes HJ, van der Vliet HJ, von Blomberg BM, Scheper RJ, van den Eertwegh AJ (2007) Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25:862–868

    PubMed  Google Scholar 

  63. Najera Chuc AE, Cervantes LA, Retiguin FP, Ojeda JV, Maldonado ER (2012) Low number of invariant NKT cells is associated with poor survival in acute myeloid leukemia. J Cancer Res Clin Oncol 138:1427–1432. doi:10.1007/s00432-012-1251-x

    CAS  PubMed  Google Scholar 

  64. Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H, Imamura M (2005) Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11:7322–7327

    CAS  PubMed  Google Scholar 

  65. Yang W, Li H, Mayhew E, Mellon J, Chen PW, Niederkorn JY (2011) NKT cell exacerbation of liver metastases arising from melanomas transplanted into either the eyes or spleens of mice. Invest Ophthalmol Vis Sci 52:3094–3102. doi:10.1167/iovs.10-7067

    CAS  PubMed  Google Scholar 

  66. Bjordahl RL, Gapin L, Marrack P, Refaeli Y (2012) iNKT cells suppress the CD8 + T cell response to a murine Burkitt’s-like B cell lymphoma. PLoS ONE 7:e42635. doi:10.1371/journal.pone.0042635

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Terabe M, Swann J, Ambrosino E et al (2005) A nonclassical non-Va14Ja18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Renukaradhya GJ, Sriram V, Du W, Gervay-Hague J, Van Kaer L, Brutkiewicz RR (2006) Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int J Cancer 118:3045–3053

    CAS  PubMed  Google Scholar 

  69. Nowak M, Arredouani MS, Tun-Kyi A, Schmidt-Wolf I, Sanda MG, Balk SP, Exley MA (2010) Defective NKT cell activation by CD1d + TRAMP prostate tumor cells is corrected by interleukin-12 with alpha-galactosylceramide. PLoS ONE 5:e11311. doi:10.1371/journal.pone.0011311

    PubMed  PubMed Central  Google Scholar 

  70. Hix LM, Shi YH, Brutkiewicz RR, Stein PL, Wang CR, Zhang M (2011) CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS ONE 6:e20702. doi:10.1371/journal.pone.0020702

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Skold M, Faizunnessa NN, Wang CR, Cardell S (2000) CD1d-specific NK1.1 + T cells with a transgenic variant TCR. J Immunol 165:168–174

    CAS  PubMed  Google Scholar 

  72. Duarte N, Stenstrom M, Campino S, Bergman ML, Lundholm M, Holmberg D, Cardell SL (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol 173:3112–3118

    CAS  PubMed  Google Scholar 

  73. Kadri N, Korpos E, Gupta S et al (2012) CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes. J Immunol 188:3138–3149. doi:10.4049/jimmunol.1101390

    CAS  PubMed  Google Scholar 

  74. Subramanian L, Blumenfeld H, Tohn R et al (2012) NKT cells stimulated by long fatty acyl chain sulfatides significantly reduce the incidence of type 1 diabetes in nonobese diabetic mice [corrected]. PLoS ONE 7:e37771. doi:10.1371/journal.pone.0037771

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Halder RC, Aguilera C, Maricic I, Kumar V (2007) Type II NK T cell-mediated anergy induction in type I NK T cells prevents inflammatory liver disease. J Clin Invest 117:2302–2312

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Baron V, Bouneaud C, Cumano A, Lim A, Arstila TP, Kourilsky P, Ferradini L, Pannetier C (2003) The repertoires of circulating human CD8(+) central and effector memory T cell subsets are largely distinct. Immunity 18:193–204

    PubMed  Google Scholar 

  77. Arrenberg P, Maricic I, Kumar V (2011) Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology 140:646–655. doi:10.1053/j.gastro.2010.10.003

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang G, Nie H, Yang J, Ding X, Huang Y, Yu H, Li R, Yuan Z, Hu S (2011) Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma. Am J Physiol Lung Cell Mol Physiol 301:L975–L984. doi:10.1152/ajplung.0 0114.2011

    CAS  PubMed  Google Scholar 

  79. Kwiecinski J, Rhost S, Lofbom L, Blomqvist M, Mansson JE, Cardell SL, Jin T (2013) Sulfatide attenuates experimental Staphylococcus aureus sepsis through a CD1d-dependent pathway. Infect Immun 81:1114–1120. doi:10.1128/IAI.01334-12

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang SH, Lee JP, Jang HR et al (2011) Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J Am Soc Nephrol 22:1305–1314. doi:10.1681/ASN.2010080815

    CAS  PubMed  Google Scholar 

  81. Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ (2005) Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73:181–192

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mallevaey T, Fontaine J, Breuilh L et al (2007) Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis. Infect Immun 75:2171–2180

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Brandl C, Ortler S, Herrmann T, Cardell S, Lutz MB, Wiendl H (2010) B7-H1-deficiency enhances the potential of tolerogenic dendritic cells by activating CD1d-restricted type II NKT cells. PLoS ONE 5:e10800. doi:10.1371/journal.pone.0010800

    PubMed  PubMed Central  Google Scholar 

  84. Kim JH, Choi EY, Chung DH (2007) Donor bone marrow type II (non-Valpha14Jalpha18 CD1d-restricted) NKT cells suppress graft-versus-host disease by producing IFN-gamma and IL-4. J Immunol 179:6579–6587

    CAS  PubMed  Google Scholar 

  85. Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR (2008) Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111:5637–5645

    CAS  PubMed  Google Scholar 

  86. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1:515–520

    CAS  PubMed  Google Scholar 

  87. Terabe M, Matsui S, Park J-M et al (2003) Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ambrosino E, Terabe M, Halder RC, Peng J, Takaku S, Miyake S, Yamamura T, Kumar V, Berzofsky JA (2007) Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179:5126–5136

    Google Scholar 

  89. Terabe M, Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28:491–496

    CAS  PubMed  Google Scholar 

  90. Berzofsky JA, Terabe M (2008) NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 180:3627–3635

    CAS  PubMed  Google Scholar 

  91. Izhak L, Ambrosino E, Kato S et al (2013) Delicate balance among three types of T cells in concurrent regulation of tumor immunity. Cancer Res 73:1514–1523. doi:10.1158/0008-5472.CAN-12-2567

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Akbari O, Stock P, Meyer E et al (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588

    CAS  PubMed  Google Scholar 

  93. Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, Kronenberg M, DeKruyff RH, Umetsu DT (2006) CD4 + invariant T-cell-receptor + natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129

    CAS  PubMed  Google Scholar 

  94. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  95. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133

    CAS  PubMed  Google Scholar 

  96. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR (2013) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45. doi:10.1111/j.1365-2249.2012.04657.x

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Terabe M, Berzofsky JA (2004) Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 16:157–162

    CAS  PubMed  Google Scholar 

  98. Liu R, La Cava A, Bai XF et al (2005) Cooperation of invariant NKT cells and CD4 + CD25 + T regulatory cells in the prevention of autoimmune myasthenia. J Immunol 175:7898–7904

    CAS  PubMed  Google Scholar 

  99. Jiang S, Game DS, Davies D, Lombardi G, Lechler RI (2005) Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4 + CD25 + regulatory T cells? Eur J Immunol 35:1193–1200

    CAS  PubMed  Google Scholar 

  100. Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG (2000) Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 1:245–251. doi:10.1038/79792

    CAS  PubMed  Google Scholar 

  101. Ronet C, Darche S, Leite de Moraes M, Miyake S, Yamamura T, Louis JA, Kasper LH, Buzoni-Gatel D (2005) NKT cells are critical for the initiation of an inflammatory bowel response against Toxoplasma gondii. J Immunol 175:899–908

    CAS  PubMed  Google Scholar 

  102. Burdin N, Brossay L, Kronenberg M (1999) Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 29:2014–2025

    CAS  PubMed  Google Scholar 

  103. Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115:2572–2583

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Santodomingo-Garzon T, Han J, Le T, Yang Y, Swain MG (2009) Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology 49:1267–1276. doi:10.1002/hep.22761

    CAS  PubMed  Google Scholar 

  105. Roelofs-Haarhuis K, Wu X, Nowak M, Fang M, Artik S, Gleichmann E (2003) Infectious nickel tolerance: a reciprocal interplay of tolerogenic APCs and T suppressor cells that is driven by immunization. J Immunol 171:2863–2872

    CAS  PubMed  Google Scholar 

  106. Diana J, Brezar V, Beaudoin L et al (2011) Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. J Exp Med 208:729–745. doi:10.1084/jem.20101692

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chang YJ, Kim HY, Albacker LA et al (2011) Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J Clin Invest 121:57–69. doi:10.1172/JCI44845

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kohrt HE, Pillai AB, Lowsky R, Strober S (2010) NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol 40:1862–1869. doi:10.1002/eji.201040394

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hongo D, Tang X, Dutt S, Nador RG, Strober S (2012) Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood 119:1581–1589. doi:10.1182/blood-2011-08-371948

    CAS  PubMed  Google Scholar 

  110. Kohrt HE, Turnbull BB, Heydari K et al (2009) TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood 114:1099–1109. doi:10.1182/blood-2009-03-211441

    CAS  PubMed  Google Scholar 

  111. Lowsky R, Takahashi T, Liu YP et al (2005) Protective conditioning for acute graft-versus-host disease. N Engl J Med 353:1321–1331. doi:10.1056/NEJMoa050642

    CAS  PubMed  Google Scholar 

  112. Vela-Ojeda J, Montiel-Cervantes L, Granados-Lara P et al (2010) Role of CD4 + CD25 + highFoxp3 + CD62L + regulatory T cells and invariant NKT cells in human allogeneic hematopoietic stem cell transplantation. Stem Cells Dev 19:333–340. doi:10.1089/scd 2009.0216

    CAS  PubMed  Google Scholar 

  113. Oh KH, Lee C, Lee SW, Jeon SH, Park SH, Seong RH, Hong S (2011) Activation of natural killer T cells inhibits the development of induced regulatory T cells via IFNgamma. Biochem Biophys Res Commun 411:599–606. doi:10.1016/j.bbrc.2011.06.193

    CAS  PubMed  Google Scholar 

  114. Nguyen KD, Vanichsarn C, Nadeau KC (2008) Increased cytotoxicity of CD4 + invariant NKT cells against CD4 + CD25hiCD127lo/- regulatory T cells in allergic asthma. Eur J Immunol 38:2034–2045. doi:10.1002/eji.200738082

    CAS  PubMed  Google Scholar 

  115. Thorburn AN, Foster PS, Gibson PG, Hansbro PM (2012) Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells. J Immunol 188:4611–4620. doi:10.4049/jimmunol.1101299

    CAS  PubMed  Google Scholar 

  116. Nishikawa H, Kato T, Tanida K et al (2003) CD4 + CD25 + T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100:10902–10906

    CAS  PubMed  Google Scholar 

  117. Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4 + CD25 + regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520

    CAS  PubMed  Google Scholar 

  118. Venken K, Decruy T, Aspeslagh S, Van Calenbergh S, Lambrecht BN, Elewaut D (2013) Bacterial CD1d-restricted glycolipids induce IL-10 production by human regulatory T cells upon cross-talk with invariant NKT cells. J Immunol 191:2174–2183. doi:10.4049/jimmunol.1300562

    CAS  PubMed  Google Scholar 

  119. Petersen TR, Sika-Paotonu D, Knight DA, Dickgreber N, Farrand KJ, Ronchese F, Hermans IF (2010) Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol 88:596–604. doi:10.1038/icb.2010.9

    CAS  PubMed  Google Scholar 

  120. Mattarollo SR, Steegh K, Li M, Duret H, Ngiow SF, Smyth MJ (2013) Transient Foxp3(+) regulatory T-cell depletion enhances therapeutic anticancer vaccination targeting the immune-stimulatory properties of NKT cells. Immunol Cell Biol 91:105–114. doi:10.1038/icb.2012.58

    CAS  PubMed  Google Scholar 

  121. Pere H, Tanchot C, Bayry J et al (2012) Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer. Oncoimmunology 1:326–333. doi:10.4161/onci.18852

    PubMed  PubMed Central  Google Scholar 

  122. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A (2002) Depletion of CD25 + regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32:3267–3275

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the intramural research program of the National Cancer Institute, NIH and the Gui Foundation.

Conflict of interest

Authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Terabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terabe, M., Berzofsky, J.A. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 63, 199–213 (2014). https://doi.org/10.1007/s00262-013-1509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1509-4

Keywords

Navigation