Skip to main content

Advertisement

Log in

CD40 pathway activation reveals dual function for macrophages in human endometrial cancer cell survival and invasion

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Reproductive malignancies are a major cause of cancer death in women worldwide. CD40 is a TNF receptor family member, which upon activation may mediate tumor regression. However, despite the great potential of CD40 agonists, their use as a therapeutic option for reproductive cancers has never been investigated. Because CD40 ligation is a potent pathway of macrophage activation, an in vitro model of pro-inflammatory type-1 (Mϕ-1) and anti-inflammatory type-2 (Mϕ-2) macrophages was developed to determine whether and how macrophage CD40 pathway activation might influence endometrial tumor cell behavior. Analysis of tumor growth kinetic in the endometrial cancer xenograft model indicates that, when injected once into the growing tumors, CD40-activated Mϕ-1 greatly reduced, while CD40-activated Mϕ-2 increased tumor size when compared to control isotype-activated Mϕ-1 and Mϕ-2, respectively. In vitro assays indicated that CD40-activated Mϕ-2 increased cell viability but failed to promote cell invasion. CD40-activated Mϕ-1, in contrast, decreased cell survival but greatly increased cell invasion in tumor cells less susceptible to cell death by apoptosis; they also induced the expression of some pro-inflammatory genes, such as IL-6, LIF, and TNF-α, known to be involved in tumor promotion and metastasis. The presence of IFN-γ is minimally required for CD40-activated Mϕ-1 to promote tumor cell invasion, a process that is mediated in part through the activation of the PI3K/Akt2 signaling pathway in tumor cells. From these results, we speculate that some functions of CD40 in tumor-associated Mϕs might limit the therapeutic development of CD40 agonists in endometrial cancer malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I (2005) Endometrial cancer. Lancet 366:491–505. doi:10.1016/S0140-6736(05)67063-8

    Article  PubMed  Google Scholar 

  2. Sohaib SA, Houghton SL, Meroni R, Rockall AG, Blake P, Reznek RH (2007) Recurrent endometrial cancer: patterns of recurrent disease and assessment of prognosis. Clin Radiol 62: 28–34; discussion 35–26. doi:10.1016/j.crad.2006.06.015

  3. Stout RD, Suttles J (1996) The many roles of CD40 in cell-mediated inflammatory responses. Immunol Today 17:487–492

    Article  PubMed  CAS  Google Scholar 

  4. Schonbeck U, Libby P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58:4–43

    Article  PubMed  CAS  Google Scholar 

  5. Peters AL, Stunz LL, Bishop GA (2009) CD40 and autoimmunity: the dark side of a great activator. Semin Immunol 21:293–300. doi:10.1016/j.smim.2009.05.012

    Article  PubMed  CAS  Google Scholar 

  6. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229:152–172. doi:10.1111/j.1600-065X.2009.00782.x

    Article  PubMed  CAS  Google Scholar 

  7. Costello RT, Gastaut JA, Olive D (1999) What is the real role of CD40 in cancer immunotherapy? Immunol Today 20:488–493

    Article  PubMed  CAS  Google Scholar 

  8. Eliopoulos AG, Young LS (2004) The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr Opin Pharmacol 4:360–367

    Article  PubMed  CAS  Google Scholar 

  9. Vonderheide RH (2007) Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 13:1083–1088. doi:10.1158/1078-0432.CCR-06-1893

    Article  PubMed  CAS  Google Scholar 

  10. Bereznaya NM, Chekhun VF (2007) Expression of CD40 and CD40L on tumor cells: the role of their interaction and new approach to immunotherapy. Exp Oncol 29:2–12

    PubMed  CAS  Google Scholar 

  11. Dufresne M, Dumas G, Asselin E, Carrier C, Pouliot M, Reyes-Moreno C (2011) Pro-inflammatory type-1 and anti-inflammatory type-2 macrophages differentially modulate cell survival and invasion of human bladder carcinoma T24 cells. Mol Immunol 48:1556–1567. doi:10.1016/j.molimm.2011.04.022

    Article  PubMed  CAS  Google Scholar 

  12. Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2005) CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol 174:6013–6022

    PubMed  CAS  Google Scholar 

  13. Rakhmilevich AL, Buhtoiarov IN, Malkovsky M, Sondel PM (2008) CD40 ligation in vivo can induce T cell independent antitumor effects even against immunogenic tumors. Cancer Immunol Immunother 57:1151–1160. doi:10.1007/s00262-007-0447-4

    Article  PubMed  Google Scholar 

  14. Lum HD, Buhtoiarov IN, Schmidt BE, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2006) In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages. J Leukoc Biol 79:1181–1192. doi:10.1189/jlb.0405191

    Article  PubMed  CAS  Google Scholar 

  15. Reyes-Moreno C, Girouard J, Lapointe R, Darveau A, Mourad W (2004) CD40/CD40 homodimers are required for CD40-induced phosphatidylinositol 3-kinase-dependent expression of B7.2 by human B lymphocytes. J Biol Chem 279:7799–7806

    Article  PubMed  CAS  Google Scholar 

  16. Girouard J, Reyes-Moreno C, Darveau A, Akoum A, Mourad W (2005) Requirement of the extracellular cysteine at position six for CD40/CD40 dimer formation and CD40-induced IL-8 expression. Mol Immunol 42:773–780

    Article  PubMed  CAS  Google Scholar 

  17. Reyes-Moreno C, Sharif-Askari E, Girouard J, Leveille C, Jundi M, Akoum A, Lapointe R, Darveau A, Mourad W (2007) Requirement of oxidation-dependent CD40 homodimers for CD154/CD40 bidirectional signaling. J Biol Chem 282:19473–19480

    Article  PubMed  CAS  Google Scholar 

  18. Dery MC, Van Themsche C, Provencher D, Mes-Masson AM, Asselin E (2007) Characterization of EN-1078D, a poorly differentiated human endometrial carcinoma cell line: a novel tool to study endometrial invasion in vitro. Reprod Biol Endocrinol 5:38. doi:10.1186/1477-7827-5-38

    Article  PubMed  Google Scholar 

  19. Rouette A, Parent S, Girouard J, Leblanc V, Asselin E (2012) Cisplatin increases B-cell-lymphoma-2 expression via activation of protein kinase C and Akt2 in endometrial cancer cells. Int J Cancer 130:1755–1767. doi:10.1002/ijc.26183

    Article  PubMed  CAS  Google Scholar 

  20. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  21. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  PubMed  CAS  Google Scholar 

  22. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi:10.1038/nri1733

    Article  PubMed  CAS  Google Scholar 

  23. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  24. Chakraborty NG, Okino T, Stabach P, Padula SJ, Yamase H, Morse E, Sha’afi RI, Twardzik DR, Shultz LJ, Mukherji B (1991) Adoptive transfer of activated human autologous macrophages results in regression of transplanted human melanoma cells in SCID mice. In Vivo 5:609–614

    PubMed  CAS  Google Scholar 

  25. Craig M, Ying C, Loberg RD (2007) Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo. J Cell Biochem 103:1–8

    Article  Google Scholar 

  26. Salvesen HB, Akslen LA (1999) Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 84:538–543

    Article  PubMed  CAS  Google Scholar 

  27. Fujimoto J, Aoki I, Khatun S, Toyoki H, Tamaya T (2002) Clinical implications of expression of interleukin-8 related to myometrial invasion with angiogenesis in uterine endometrial cancers. Ann Oncol 13:430–434

    Article  PubMed  CAS  Google Scholar 

  28. Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G, Inoue M (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335–3342

    PubMed  Google Scholar 

  29. Conzelmann M, Wagner AH, Hildebrandt A, Rodionova E, Hess M, Zota A, Giese T, Falk CS, Ho AD, Dreger P, Hecker M, Luft T (2010) IFN-gamma activated JAK1 shifts CD40-induced cytokine profiles in human antigen-presenting cells toward high IL-12p70 and low IL-10 production. Biochem Pharmacol 80:2074–2086. doi:10.1016/j.bcp.2010.07.040

    Article  PubMed  CAS  Google Scholar 

  30. Shurin MR, Yurkovetsky ZR, Tourkova IL, Balkir L, Shurin GV (2002) Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68. doi:10.1002/ijc.10576

    Article  PubMed  CAS  Google Scholar 

  31. Murugaiyan G, Agrawal R, Mishra GC, Mitra D, Saha B (2006) Functional dichotomy in CD40 reciprocally regulates effector T cell functions. J Immunol 177:6642–6649

    PubMed  CAS  Google Scholar 

  32. Murugaiyan G, Martin S, Saha B (2007) Levels of CD40 expression on dendritic cells dictate tumour growth or regression. Clin Exp Immunol 149:194–202. doi:10.1111/j.1365-2249.2007.03407.x

    Article  PubMed  CAS  Google Scholar 

  33. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371

    Article  PubMed  CAS  Google Scholar 

  34. Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41:2502–2512

    Article  PubMed  CAS  Google Scholar 

  35. Mylonas I, Makovitzky J, Shabani N, Richter DU, Kuhn C, Jeschke U, Briese V, Friese K (2005) Leukaemia inhibitory factor (LIF) is immunohistochemically expressed in normal, hyperplastic and malignant endometrial tissue. Eur J Obstet Gynecol Reprod Biol 118:101–108

    Article  PubMed  CAS  Google Scholar 

  36. Lu Y, Wahl LM (2005) Production of matrix metalloproteinase-9 by activated human monocytes involves a phosphatidylinositol-3 kinase/Akt/IKKalpha/NF-kappaB pathway. J Leukoc Biol 78:259–265. doi:10.1189/jlb.0904498

    Article  PubMed  CAS  Google Scholar 

  37. Malik N, Greenfield BW, Wahl AF, Kiener PA (1996) Activation of human monocytes through CD40 induces matrix metalloproteinases. J Immunol 156:3952–3960

    PubMed  CAS  Google Scholar 

  38. Zhou M, Zhang Y, Ardans JA, Wahl LM (2003) Interferon-gamma differentially regulates monocyte matrix metalloproteinase-1 and -9 through tumor necrosis factor-alpha and caspase 8. J Biol Chem 278:45406–45413. doi:10.1074/jbc.M309075200

    Article  PubMed  CAS  Google Scholar 

  39. Phipps RP (2000) Atherosclerosis: the emerging role of inflammation and the CD40-CD40 ligand system. Proc Natl Acad Sci USA 97:6930–6932

    Article  PubMed  CAS  Google Scholar 

  40. Monaco C, Andreakos E, Kiriakidis S, Feldmann M, Paleolog E (2004) T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases. Curr Drug Targets 3:35–42

    CAS  Google Scholar 

  41. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349

    PubMed  CAS  Google Scholar 

  42. Kelly RW, King AE, Critchley HO (2002) Inflammatory mediators and endometrial function–focus on the perivascular cell. J Reprod Immunol 57:81–93

    Article  PubMed  CAS  Google Scholar 

  43. King AE, Kelly RW, Critchley HO, Malmstrom A, Sennstrom M, Phipps RP (2001) Cd40 expression in uterine tissues: a key regulator of cytokine expression by fibroblasts. J Clin Endocrinol Metab 86:405–412

    Article  PubMed  CAS  Google Scholar 

  44. Altenburg A, Baldus SE, Smola H, Pfister H, Hess S (1999) CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma. J Immunol 162:4140–4147

    PubMed  CAS  Google Scholar 

  45. Gallagher NJ, Eliopoulos AG, Agathangelo A, Oates J, Crocker J, Young LS (2002) CD40 activation in epithelial ovarian carcinoma cells modulates growth, apoptosis, and cytokine secretion. Mol Pathol 55:110–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from The Fonds de la Recherche en Santé du Québec (FRSQ) and the Natural Science and Engineering Research Council (NSERC) of Canada to C.R.M. G.D. and was supported by the Research Awards Program of the NSERC. J.G. holds a postdoctoral fellowship from the FRSQ. E.A. is holder of the Canada research chair in Molecular Gyneco–Oncology.

Conflict of interest

The authors declare no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Reyes-Moreno.

Additional information

Geneviève Dumas and Mathieu Dufresne contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, G., Dufresne, M., Asselin, É. et al. CD40 pathway activation reveals dual function for macrophages in human endometrial cancer cell survival and invasion. Cancer Immunol Immunother 62, 273–283 (2013). https://doi.org/10.1007/s00262-012-1333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1333-2

Keywords

Navigation