Skip to main content

Advertisement

Log in

Improvement of tumor targeting and antitumor activity by a disulphide bond stabilized diabody expressed in Escherichia coli

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We have generated an anti-Pgp/anti-CD3 diabody which can effectively inhibit the growth of multidrug-resistant human tumors. However, the two chains of the diabody are associated non-covalently and are therefore capable of dissociation. Cysteine residues were introduced into the V-domains to promote disulphide cross-linking of the dimer as secreted by Escherichia coli. Compared with the parent diabody, the ds-Diabody obtained was more stable in human serum at 37°C, without loss of affinity or cytotoxicity activity in vitro. Furthermore, the ds-Diabody showed improved tumor localization and a twofold improved antitumor activity over the parent diabody in nude mice bearing Pgp-overexpressing K562/A02 xenografts. Our data demonstrate that ds-Diabody may be more useful in therapeutic applications than the parent diabody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benhar I, Pastan I (1995) Characterization of B1(Fv)PE38 and B1(dsFv)PE38: single-chain and disulfide-stabilized Fv immunotoxins with increased activity that cause complete remissions of established human carcinoma xenografts in nude mice. Clin Cancer Res 1:1023–1029

    PubMed  CAS  Google Scholar 

  2. Bera TK, Onda M, Brinkmann U, Pastan I (1998) A bivalent disulfide-stabilized Fv with improved antigen binding to erbB2. J Mol Biol 281:475–483

    Article  PubMed  CAS  Google Scholar 

  3. Brinkmann U, Reiter Y, Jung SH, Lee B, Pastan I (1993) A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci USA 90:7538–7542

    Article  PubMed  CAS  Google Scholar 

  4. Buhler P, Wolf P, Gierschner D, Schaber I, Katzenwadel A, Schultze-Seemann W, Wetterauer U, Tacke M, Swamy M, Schamel WW, Elsasser-Beile U (2008) A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells. Cancer Immunol Immunother 57:43–52

    Article  PubMed  CAS  Google Scholar 

  5. Cochlovius B, Kipriyanov SM, Stassar MJJG, Christ O, Schuhmacher J, Strau G, Moldenhauer G, Little M (2000) Treatment of human B Cell lymphoma xenografts with a CD3 CD19 diabody and T Cells. J Immunol 165:888–895

    PubMed  CAS  Google Scholar 

  6. Creighton TE (1984) Disulfide bond formation in proteins. Methods Enzymol 107:305–329

    Article  PubMed  CAS  Google Scholar 

  7. de Figueiredo-Pontes LL, Pintao MC, Oliveira LC, Dalmazzo LF, Jacomo RH, Garcia AB, Falcao RP, Rego EM (2008) Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. Cytometry B Clin Cytom 74:163–168

    PubMed  Google Scholar 

  8. Deuchars KL, Ling V (1989) P-glycoprotein and multidrug resistance in cancer chemotherapy. Semin Oncol 16:156–165

    PubMed  CAS  Google Scholar 

  9. Dreier T, Baeuerle PA, Fichtner I, Grun M, Schlereth B, Lorenczewski G, Kufer P, Lutterbuse R, Riethmuller G, Gjorstrup P, Bargou RC (2003) T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol 170:4397–4402

    PubMed  CAS  Google Scholar 

  10. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, Kufer P, Riethmuller G, Bargou R, Baeuerle PA (2002) Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 100:690–697

    Article  PubMed  CAS  Google Scholar 

  11. Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58:137–171

    Article  PubMed  CAS  Google Scholar 

  12. FitzGerald K, Holliger P, Winter G (1997) Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris. Protein Eng 10:1221–1225

    Article  PubMed  CAS  Google Scholar 

  13. Gao Y, Xiong D, Yang M, Liu H, Peng H, Shao X, Xu Y, Xu C, Fan D, Qin L, Yang C, Zhu Z (2004) Efficient inhibition of multidrug-resistant human tumors with a recombinant bispecific anti-P-glycoprotein x anti-CD3 diabody. Leukemia 18:513–520

    Article  PubMed  CAS  Google Scholar 

  14. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi H, Asano R, Tsumoto K, Katayose Y, Suzuki M, Unno M, Kodama H, Takemura S, Yoshida H, Makabe K, Imai K, Matsuno S, Kumagai I, Kudo T (2004) A highly effective and stable bispecific diabody for cancer immunotherapy: cure of xenografted tumors by bispecific diabody and T-LAK cells. Cancer Immunol Immunother 53:497–509

    Article  PubMed  CAS  Google Scholar 

  16. Hicklin DJ, Marincola FM, Ferrone S (1999) HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 5:178–186

    Article  PubMed  CAS  Google Scholar 

  17. Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90:6444–6448

    Article  PubMed  CAS  Google Scholar 

  18. Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064

    PubMed  CAS  Google Scholar 

  19. Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321

    Article  PubMed  CAS  Google Scholar 

  20. Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321

    Article  PubMed  CAS  Google Scholar 

  21. Johnsen AK, Templeton DJ, Sy M, Harding CV (1999) Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 163:4224–4231

    PubMed  CAS  Google Scholar 

  22. Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN (1992) Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 52:5144–5153

    PubMed  CAS  Google Scholar 

  23. Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S (1999) Down-regulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression. Am J Pathol 154:745–754

    PubMed  CAS  Google Scholar 

  24. Keshet GI, Goldstein I, Itzhaki O, Cesarkas K, Shenhav L, Yakirevitch A, Treves AJ, Schachter J, Amariglio N, Rechavi G (2008) MDR1 expression identifies human melanoma stem cells. Biochem Biophys Res Commun 368:930–936

    Article  PubMed  CAS  Google Scholar 

  25. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40(suppl):S3–S8

    Google Scholar 

  26. Moscow JA, Schneider E, Ivy SP, Cowan KH (1997) Multidrug resistance. Cancer Chemother Biol Response Modif 17:139–177

    PubMed  CAS  Google Scholar 

  27. Raaijmakers MH, de Grouw EP, van der Reijden BA, de Witte TJ, Jansen JH, Raymakers RA (2006) ABCB1 modulation does not circumvent drug extrusion from primitive leukemic progenitor cells and may preferentially target residual normal cells in acute myelogenous leukemia. Clin Cancer Res 12:3452–3458

    Article  PubMed  CAS  Google Scholar 

  28. Rees RC, Mian S (1999) Selective MHC expression in tumours modulates adaptive and innate antitumour responses. Cancer Immunol Immunother 48:374–381

    Article  PubMed  CAS  Google Scholar 

  29. Reiter Y, Brinkmann U, Jung SH, Lee B, Kasprzyk PG, King CR, Pastan I (1994) Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J Biol Chem 269:18327–18331

    PubMed  CAS  Google Scholar 

  30. Reiter Y, Kreitman RJ, Brinkmann U, Pastan I (1994) Cytotoxic and antitumor activity of a recombinant immunotoxin composed of disulfide-stabilized anti-Tac Fv fragment and truncated Pseudomonas exotoxin. Int J Cancer 58:142–149

    Article  PubMed  CAS  Google Scholar 

  31. Reiter Y, Pai LH, Brinkmann U, Wang QC, Pastan I (1994) Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Cancer Res 54:2714–2718

    PubMed  CAS  Google Scholar 

  32. Schaich M, Soucek S, Thiede C, Ehninger G, Illmer T (2005) MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br J Haematol 128:324–332

    Article  PubMed  CAS  Google Scholar 

  33. Shen DC, Yang XF (1993) A high affinity CD3 monoclonal antibody HIT3a. Acta Academiae Medicinae Sinicae 15:157–162

    PubMed  CAS  Google Scholar 

  34. Stinchcombe JC, Bossi G, Booth S, Griffiths GM (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15:751–761

    Article  PubMed  CAS  Google Scholar 

  35. Stopeck AT, Gessner A, Miller TP, Hersh EM, Johnson CS, Cui H, Frutiger Y, Grogan TM (2000) Loss of B7.2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lymphocytes in diffuse B-cell large-cell lymphoma. Clin Cancer Res 6:3904–3909

    PubMed  CAS  Google Scholar 

  36. Stromskaya TP, Rybalkina EY, Kruglov SS, Zabotina TN, Mechetner EB, Turkina AG, Stavrovskaya AA (2008) Role of P-glycoprotein in evolution of populations of chronic myeloid leukemia cells treated with imatinib. Biochemistry (Mosc) 73:29–37

    CAS  Google Scholar 

  37. Tsukamoto F, Shiba E, Taguchi T, Sugimoto T, Watanabe T, Kim SJ, Tanji Y, Kimoto Y, Izukura M, Takai SI (1997) Immunohistochemical Detection of P-glycoprotein in Breast Cancer and Its Significance as a Prognostic Factor. Breast Cancer 4:259–263

    Article  PubMed  Google Scholar 

  38. Xiong DS, Yang CZ (1999) Generation and characterization of monoclonal antibodies against P-glycoprotein (Pgp). Clin J Hematol 20:326–327

    Google Scholar 

  39. Yang CZ, Luan FJ, Xiong DS, Liu BR, Xu YF, Gu KS (1995) Multidrug resistance in leukemic cell line K562/A02 induced by doxorubicin. Zhongguo Yao Li Xue Bao 16:333–337

    PubMed  Google Scholar 

  40. Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    PubMed  CAS  Google Scholar 

  41. Zhu Z, Rockwell P, Lu D, Kotanides H, Pytowski B, Hicklin DJ, Bohlen P, Witte L (1998) Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain-containing receptor single-chain antibodies from a phage display library. Cancer Res 58:3209–3214

    PubMed  CAS  Google Scholar 

  42. Zhu Z, Zapata G, Shalaby R, Snedecor B, Chen H, Carter P (1996) High level secretion of a humanized bispecific diabody from Escherichia coli. Biotechnology (NY) 14:192–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant number: 30400558) and from the Natural Science Foundation of Tianjin (Grant number: 08ZCKFSH04100, 05YFJZJC01200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingdai Gao or Dongsheng Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Yang, M., Wang, J. et al. Improvement of tumor targeting and antitumor activity by a disulphide bond stabilized diabody expressed in Escherichia coli . Cancer Immunol Immunother 58, 1761–1769 (2009). https://doi.org/10.1007/s00262-009-0684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0684-9

Keywords

Navigation