Skip to main content

Advertisement

Log in

Serum-free generation and quantification of functionally active Leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Functional dendritic cells (DC) are professional antigen presenting cells (APC) and can be generated in vitro from leukemic cells from acute myeloid leukemia AML patients, giving rise to APC of leukemic origin presenting leukemic antigens (DCleu). We have already shown that DC can be successfully generated from AML and myeloplastic syndromes (MDS) cells in serum-free ‘standard’ medium (X-vivo + GM-CSF + IL-4 +TNFα + FL) in 10–14 days. In this study, we present that DC counts generated from mononuclear cells (MNC) varied between 20% (from 55 MDS samples), 34% (from 100 AML samples) and 25% (from 38 healthy MNC samples) medium. Between 53% and 58% of DC are mature CD83+ DC. DC harvests were highest in monocytoid FAB types (AML-M4/M5, MDS-CMML) and independent from cytogenetic risk groups, demonstrating that DC-based strategies can be applied for patients with all cytogenetic risk groups. Proof of the clonal derivation of DC generated was obtained in five AML and four MDS cases with a combined FISH/immunophenotype analysis (FISH-IPA): The clonal numerical chromosome aberrations of the diseases were regularly codetectable with DC markers; however, not with all clonal cells being convertible to leukemia-derived DCleu (on average, 53% of blasts in AML or MDS). To the contrary, not all DC generated carried the clonal aberration (on average, 51% of DC). In 41 AML and 13 MDS cases with a suitable antigen expression, we could confirm FISH-IPA data by Flow cytometry: although DCleu are regularly detectable, on average only 57% of blasts in AML and 64% of blasts in MDS were converted to DCleu. After coculture with DC in mixed lymphocyte reactions (MLR), autologous T cells from AML and MDS patients proliferate and upregulate costimulatory receptors. The specific lysis of leukemic cells by autologous T cells could be demonstrated in three cases with AML in a Fluorolysis assay. In six cases with only few DCleu or few vital T cells available after the DC/MLR procedure, no lysis of allogeneic or autologous leukemic cells was seen, pointing to the crucial role of both partners in the lysis process. We conclude: (1) the generation of DC is regularly possible in AML and also in MDS under serum-free conditions. (2) Clonal/leukemia-derived DCleu can be regularly generated from MDS and AML-MNC; however, not with all blasts being converted to DCleu and not all DC generated carrying leukemic markers. We recommend to select DCleu for vaccinations or ex vivo T-cell activations to avoid contaminations with non-converted blasts and non-leukemia-derived DC and to improve the harvest of specific, anti-leukemic T cells. DC and DC-primed T cells could provide a practical strategy for the immunotherapy of AML and MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same coin. N Engl J Med 343(14):1020–1034

    Google Scholar 

  2. Appelbaum FR (2003) New targets for therapy in acute myeloid leukemia. Leukemia 17(3):492–495

    Google Scholar 

  3. Aul C, Giagounidis A, Germing U, Ganser A (2002) Myelodysplastic syndromes. Diagnosis and therapeutic strategies. Med Klin 97(11):666–676

    Google Scholar 

  4. Balaian L, Ball ED (2001) Direct effect of bispecific anti-CD33×anti-CD64 antibody on proliferation and signaling in myeloid cells. Leuk Res 25(12):1115–1125

    Google Scholar 

  5. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33(4):451–458

    CAS  PubMed  Google Scholar 

  6. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51(2):189–199

    Google Scholar 

  7. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, Kwak KB, Peschon JJ, Taylor PA (2001) Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol 166(5):3174–3183

    CAS  PubMed  Google Scholar 

  8. Brossart P (2002) Dendritic cells in vaccination therapies of malignant diseases. Transfus Apher Sci 27:183–186

    Google Scholar 

  9. Brossart P, Grunebach F, Stuhler G, Reichardt VL, Mohle R, Kanz L et al (1998) Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood 92(11):4238–4247

    CAS  PubMed  Google Scholar 

  10. Bruserud O, Gjertsen BT, von Volkman HL (2000) In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. J Hematother Stem Cell Res 9(6):923–932

    Google Scholar 

  11. Buechner T, Hiddemann W, Berdel WE, Wormann B, Schoch C, Fonatsch C et al (2003) 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group. J Clin Oncol 21(24):4496–4504

    Google Scholar 

  12. Bunjes D (2002) 188Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients with high-risk acute myeloid leukemia. Leukemia Lymphoma 43(11):2125–2131

    Google Scholar 

  13. Campana D, Behm FG (2000) Immunophenotyping of leukemia. J Immunol Methods 243:59–75

    Google Scholar 

  14. Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M et al (1997) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor á: II functional analysis. Blood 4:1458–1470

    Google Scholar 

  15. Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10–16

    Google Scholar 

  16. Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D (1999) Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias. Eur J Immunol 29(8):2567–2578

    Google Scholar 

  17. Choudhury A, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K et al (1999) Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 93(3):780–786

    Google Scholar 

  18. Claxton DF, McMannis J, Champlin R, Choudhury A (2001) Therapeutic potential of leukemia-derived dendritic cells: preclinical and clinical progress. Crit Rev Immunol 21:147–155

    Google Scholar 

  19. De Vries IJ, Eggert AA, Scharenborg NM, Vissers JL, Lesterhuis WJ, Boerman OC, Punt CJ, Adema GJ, Figdor CG (2002) Phenotypical and functional characterization of clinical grade dendritic cells. J Immunother 25(5):429–438

    Google Scholar 

  20. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854

    Article  CAS  PubMed  Google Scholar 

  21. Elghetany MT (1998) Surface marker abnormalities in myelodysplastic syndromes. Haematologica 83(12):1104–1115

    Google Scholar 

  22. Erben U, Thiel E, Bittroff-Leben A, Schoch C, Fichtner I, Durkop H, Notter M (2003) CS-1, a novel c-kithi+ acute myeloid leukemia cell line with dendritic cell differentiation capacity and absent immunogenicity. Int J Cancer 105(2):232–240

    Google Scholar 

  23. Falkenburg JH, Smit WM, WillemzeR (1997) Cytotoxic T-lymphocyte (CTL) responses against acute or chronic myeloid leukemia. Immunol Rev 157:223–230

    Google Scholar 

  24. Galea-Lauri J, Darling D, Mufti G, Harrison P, Farzaneh F (2002) Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunol Immunother 51(6):299–310

    Google Scholar 

  25. Giles FJ, Keating A, Goldstone AH, Avivi I, Willmann CL, Kantarjian HM (2002) Acute myeloid leukemia. Hematology 1:73–110

    Google Scholar 

  26. Graf M , Reif S, Hecht K, Pelka-Fleischer R, Kroell T, Pfister K, Schmetzer H (2004) High expression of costimulatory molecules correlates with low relapse free-survival-probability in acute myeloid leukemia (AML). Ann Hemat, in press

  27. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89(6):2079–2088

    CAS  PubMed  Google Scholar 

  28. Haferlach T, Schoch C, Loffler H, Gassmann W, Kern W, Schnittger S, Fonatsch C, Ludwig WD, Wuchter C, Schlegelberger B, Staib P, Reichle A, Kubica U, Eimermacher H, Balleisen L, Gruneisen A, Haase D, Aul C, Karow J, Lengfelder E, Wormann B, Heinecke A, Sauerland MC, Buchner T, Hiddemann W (2003) Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol 21(2):256–265

    Google Scholar 

  29. Harrison BD, Adams JA, Briggs M, Brereton ML, Liu Yin JA (2001) Stimulation of autologous proliferative and cytotoxic T-cell responses by “leukemic dendritic cells” derived from blasts cells in acute myeloid leukemia. Blood 97:2764–2771

    Article  CAS  PubMed  Google Scholar 

  30. Hessel H, Mittermuller J, Zitzelsberger H, Weier HU, Bauchinger M (1996) Combined immunophenotyping and FISH with sex chromosome-specific DNA probes for the detection of chimerism in epidermal Langerhans cells after sex-mismatched bone marrow transplantation. Histochem Cell Biol 106(5):481–485

    Google Scholar 

  31. Hirai H (2002) Molecular pathogenesis of MDS. Int J Hematol 2(Suppl 76):213–221

    Google Scholar 

  32. van der Hoorn MA, van Luxemburg-Heijs SA, van Bergen CA, Bongaerts R, Willemze R, Falkenburg JH (2003) The progenitor cell inhibition assay to measure the anti-leukemic reactivity of T cell clones against acute and chronic myeloid leukemia. Methods 31(2):113–9

    Google Scholar 

  33. Houtenbos I, Westers TM, Stam AG, de Gruijl TD, Scheper RJ, Ossenkoppele GJ et al (2003) Serum-free generation of antigen presenting cells from acute myeloid leukaemic blasts for active specific immunisation. Cancer Immunol Immunother 52(7):455–462

    Google Scholar 

  34. Kienzle N, Olver S, Buttigieg K, Kelso A (2002) The fluorolysis assay, a highly sensitive method for measuring the cytolytic activity of T cells at very low numbers. J Immunol Methods 267(2):99–108

    Google Scholar 

  35. Koehler T, Plettig R, Wetzstein W, Schmitz M, Ritter M, Mohr B et al (2000) Cytokine-driven differentiation of blasts from patients with acute myelogenous and lymphoblastic leukemia into dendritic cells. Stem Cells 18(2):139–147

    Google Scholar 

  36. Kufner S, Kroell T, Pelka- Fleischer R, Salem A, Zitzelsberger H, de Valle F, Zirpel I, Nuessler V, Schmetzer H (2004) Leukemia-derived dendritic cells (DC) can be generated from blood or bone marrow cells from patients with acute myeloid leukemia (AML) or myelodysplasia (MDS): a methodological approach under serum-free culture conditions (submitted for publication)

  37. Lanzavecchia A, Sallusto F (2002) Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2(12):982–987

    Google Scholar 

  38. Lee AW, Truong T, Bickham K, Fonteneau JF, Larsson M, Da Silva I et al (2002) A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 20(Suppl 4):A8–A22

    Google Scholar 

  39. Li L, Schmitt A, Reinhardt P, Greiner J, Ringhoffer M, Vaida B, Bommer M, Vollmer M, Wiesneth M, Dohner H, Schmitt M (2003) Reconstruction of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immunol 3:8

    Google Scholar 

  40. Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49(3):152–156

    Google Scholar 

  41. Maeda A, Yamamoto K, Yamashita K, Asagoe K, Nohgawa M, Kita K, Iwasaki K, Ueda T, Takahashi A, Sasada M (1998) The expression of costimulatory molecules and their relationship to the prognosis of human acute myeloid leukemia: Poor prognosis of B7.2-positive leukemia. Br J Haematol 102:1257–1262

    Article  CAS  PubMed  Google Scholar 

  42. Maynadie M, Picard F, Husson B, Chatelain B, Cornet Y, Le Roux G et al (2002) Immunophenotypic clustering of myelodysplastic syndromes. Blood 100(7):2349–2356

    Google Scholar 

  43. Mitelman F (ed) (1995) Guidelines for cancer cytogenetics. Supplement to: An International System for Human Cytogenetic Nomenclature (ISCN). S Karger, Basel, Switzerland

    Google Scholar 

  44. Nestle FO, Banchereau J, Hart D (2001) Dendritic cells: on the move from the bench to bedside. Nat Med 7:761–765

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen XD, Eichler H, Dugrillon A, Piechaczek C, Braun M, Klueter H (2003) Flow cytometric analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells. J Immunol Methods 9281:1–12

    Google Scholar 

  46. Oehler L, Berer A, Kollars M, Keil F, Konig M, Waclavicek M et al (2000) Culture requirements for induction of dendritic cell differentiation in acute myeloid leukemia. Ann Hematol 79(7):355–362

    Google Scholar 

  47. Panoskaltsis N, Belanger TJ, Liesveld JL, Abboud CN (2002) Optimal cytokine stimulation for the enhanced generation of leukemic dendritic cells in short-term culture. Leuk Res 26(2):191–201

    Google Scholar 

  48. Restifo NP, Esquivel F, Kawakami Y et al (1993) Identification of human cancers deficient in antigen processing. J Exp Med 177:265–272

    Google Scholar 

  49. Rigolin GM, Howard J, Buggins A, Sneddon C, Castoldi G, Hirst WJR et al (1999) Phenotypic and functional characteristics of monocyte-derived dendritic cells from patients with myelodyplastic syndromes. Br J Haematol 107:844–850

    Google Scholar 

  50. Sallusto F, Lanzavecchia A (2002) The instructive role of dendritic cells on T-cell responses. Arthritis Res 4(Suppl 3):127–132

    Google Scholar 

  51. Santiago-Schwarz F, Coppock DL, Hindenburg AA, Kern J (1994) Identification of a malignant counterpart of the monocyte-dendritic cell progenitor in an acute myeloid leukemia. Blood 84(9):3054–3062

    Google Scholar 

  52. Sato M, Takayama T, Tanaka H, Konishi J, Suzuki T, Kaiga T, Tahara H (2003) Generation of mature dendritic cells fully capable of T helper type 1 polarization using OK-432 combined with prostaglandin E(2). Cancer Sci 94(12):1091–1098

    Google Scholar 

  53. Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15(2):138–147

    Article  CAS  PubMed  Google Scholar 

  54. Song LP, Cheng JL, Wang XB, Zhang Z, Fang M, Zhou ZY et al (2003) A new model of trispecific antibody resulting the cytotoxicity directed against tumor cells. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35(6):503–510

    Google Scholar 

  55. Stripecke R, Levine AM, Pullarkat V, Cardoso AA (2002) Immunotherapy with acute leukemia cells modified into antigen-presenting cells: ex vivo culture and gene transfer methods. Leukemia 16:1974–1983

    Google Scholar 

  56. Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD et al (1997) flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 90(4):1425–1434

    Google Scholar 

  57. Suen Y, Lee SM, Aono F, Hou S, Loudovaris M, Ofstein G et al (2001) Comparison of monocyte enrichment by immuno-magnetic depletion or adherence for the clinical-scale generation of DC. Cytotherapy 3(5): 365–375

    Google Scholar 

  58. Trail PA, King HD, Dubowchik GM (2003) Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol Immunother 52(5):328–337

    Google Scholar 

  59. Tsimberidou A, Estey E, Cortes J, Thomas D, Faderl S, Verstovsek S et al (2003) Gemtuzumab, fludarabine, Cytarabine, and cyclosporine in patients with newly diagnosed acute myelogenous leukemia or high-risk myelodysplastic syndromes. Cancer 97(6):1481–1487

    Google Scholar 

  60. Tsuchiya T, Hagihara M, Shimakura Y, Ueda Y, Gansuvd B, Munkhbat B, Inoue H, Tazume K, Kato S, Hotta T (2002) The generation of immunocompetent dendritic cells from CD34+ acute myeloid or lymphoid leukemia cells. Int J Hematol 75(1):55–62

    Google Scholar 

  61. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333(16):1038–1044

    Google Scholar 

  62. Wang L, Chen S, Liu Y, Fu J, Yu H, Li J et al (2000) The function of dendritic cells derived from chronic myeloid leukemia. Zhongguo Shi Yan Xue Za Zhi 8(3):161–165

    Google Scholar 

  63. Woiciechowsky A, Regn S, Kolb H-I, Roskrow M (2001) Leukemic dendritic cells generated in the presence of FLT3 ligand have the capacity to stimulate an autologous leukemia-specific cytotoxic T cell response from patients with acute myeloid leukemia. Leukemia 15:246–255

    Google Scholar 

  64. Zhong RK, Rassenti LZ, Kipps TJ, Chen J, Law P, Yu JF, Ball ED (2002) Sequential modulation of growth factors: a novel strategy for adoptive immunotherapy of acute myeloid leukemia. Biol Blood Marrow Tr 8(10):557–568

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Oliver Schiekl, Elke Konhaeuser, Tatjana Heller and Sabine Kaiser and other co-workers of Prof. Kolbs hemopoietic transplantation group for technical assistance and advices, PD Dr. Claudia Schoch (MED III) and PD Dr. C. Doehner (University of Ulm) for disposal of cytogenetic reports, Dr. Schwartz (University of Berlin) and PD Dr. Kern (University of Munich) for disposal of immunophenotypes and Prof. Haferlach (MED III) for disposal of morphological reports. Parts of the results presented were worked out in the course of the thesis of Stefanie Kufner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Schmetzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kufner, S., Fleischer, R.P., Kroell, T. et al. Serum-free generation and quantification of functionally active Leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes. Cancer Immunol Immunother 54, 953–970 (2005). https://doi.org/10.1007/s00262-004-0657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0657-y

Keywords

Navigation