Evaluation of clinical and imaging biomarkers for the prediction of new onset diabetes following pancreatic resection



To identify clinical and imaging biomarkers that can predict the new onset of diabetes mellitus (NODM) within 1 year of pancreatic resection.


A retrospective chart review was conducted of 426 non-diabetic patients who underwent a pancreaticoduodenectomy or distal pancreatectomy at the University of Pittsburgh Medical Center between 2006 and 2016. Clinical characteristics and the patient’s diabetic status at 1-year post resection were collected from the EMR. Imaging biomarkers included hepatic and pancreatic fat replacement, pancreatic calcifications, pancreatic duct diameter, pancreatic volume and body composition. Univariate and multivariable analyses were performed to demonstrate any predictive biomarkers of diabetes occurrence within 1 year of pancreatic resection.


135/426 (31.7%) patients developed NODM. The only significant clinical predictor was older age (OR 1.02, 95% CI 1.002–1.039, p = 0.032). Imaging characteristics found to be significant included hepatic steatosis (OR 1.777, 95% CI 1.094–2.886, p = 0.02), larger reduction in pancreas volume (OR 0.989, 95% CI 0.979–0.999, p = 0.027), and greater preoperative visceral fat (OR 1.004, 95% CI 1.001–1.006, p = 0.001).


Age, presence of hepatic steatosis, change in pancreatic volume, and preoperative visceral fat are independent predictive biomarkers for NODM following pancreatic resection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Teh SH, Diggs BS, Deveney CW, Sheppard BC. Patient and hospital characteristics on the variance of perioperative outcomes for pancreatic resection in the United States: a plea for outcome-based and not volume-based referral guidelines. Arch. Surg. 2009;144(8):713-721.

    Article  Google Scholar 

  2. 2.

    Augustin T, Burstein MD, Schneider EB, et al. Frailty predicts risk of life-threatening complications and mortality after pancreatic resections. Surgery. 2016;160(4):987-996.

    Article  Google Scholar 

  3. 3.

    Gleeson EM, Shaikh MF, Shewokis PA, et al. WHipple-ABACUS, a simple, validated risk score for 30-day mortality after pancreaticoduodenectomy developed using the ACS-NSQIP database. Surgery. 2016;160(5):1279-1287.

    Article  Google Scholar 

  4. 4.

    Winter JM, Cameron JL, Campbell KA, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J. Gastrointest. Surg. 2006;10(9):1199-1210; discussion 1210-1191.

  5. 5.

    Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37 Suppl 1:S81-90.

  6. 6.

    Scholten L, Mungroop TH, Haijtink SAL, et al. New-onset diabetes after pancreatoduodenectomy: A systematic review and meta-analysis. Surgery. 2018.

  7. 7.

    Beger HG, Poch B, Mayer B, Siech M. New Onset of Diabetes and Pancreatic Exocrine Insufficiency After Pancreaticoduodenectomy for Benign and Malignant Tumors: A Systematic Review and Meta-analysis of Long-term Results. Ann. Surg. 2018;267(2):259-270.

    Article  Google Scholar 

  8. 8.

    De Bruijn KM, van Eijck CH. New-onset diabetes after distal pancreatectomy: a systematic review. Ann. Surg. 2015;261(5):854-861.

    Article  Google Scholar 

  9. 9.

    Burkhart RA, Gerber SM, Tholey RM, et al. Incidence and severity of pancreatogenic diabetes after pancreatic resection. J. Gastrointest. Surg. 2015;19(2):217-225.

    Article  Google Scholar 

  10. 10.

    Nguyen A, Demirjian A, Yamamoto M, Hollenbach K, Imagawa DK. Development of Postoperative Diabetes Mellitus in Patients Undergoing Distal Pancreatectomy versus Whipple Procedure. Am. Surg. 2017;83(10):1050-1053.

    Article  Google Scholar 

  11. 11.

    King J, Kazanjian K, Matsumoto J, et al. Distal pancreatectomy: incidence of postoperative diabetes. J. Gastrointest. Surg. 2008;12(9):1548-1553.

    Article  Google Scholar 

  12. 12.

    Beger HG, Mayer B. Early postoperative and late metabolic morbidity after pancreatic resections: An old and new challenge for surgeons - A review. Am. J. Surg. 2018;216(1):131-134.

    Article  Google Scholar 

  13. 13.

    Kwon JH, Kim SC, Shim IK, et al. Factors Affecting the Development of Diabetes Mellitus After Pancreatic Resection. Pancreas. 2015;44(8):1296-1303.

    CAS  Article  Google Scholar 

  14. 14.

    Kang JS, Jang JY, Kang MJ, et al. Endocrine Function Impairment After Distal Pancreatectomy: Incidence and Related Factors. World J. Surg. 2016;40(2):440-446.

    Article  Google Scholar 

  15. 15.

    Hirata K, Nakata B, Amano R, Yamazoe S, Kimura K, Hirakawa K. Predictive factors for change of diabetes mellitus status after pancreatectomy in preoperative diabetic and nondiabetic patients. J. Gastrointest. Surg. 2014;18(9):1597-1603.

    Article  Google Scholar 

  16. 16.

    Shirakawa S, Matsumoto I, Toyama H, et al. Pancreatic volumetric assessment as a predictor of new-onset diabetes following distal pancreatectomy. J. Gastrointest. Surg. 2012;16(12):2212-2219.

    Article  Google Scholar 

  17. 17.

    Singh AN, Pal S, Kilambi R, et al. Diabetes after pancreaticoduodenectomy: can we predict it? J. Surg. Res. 2018;227:211-219.

    Article  Google Scholar 

  18. 18.

    Ross R. Advances in the application of imaging methods in applied and clinical physiology. Acta Diabetol. 2003;40 Suppl 1:S45-50.

    Article  Google Scholar 

  19. 19.

    Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. Journal of applied physiology (Bethesda, Md. : 1985). 2004;97(6):2333-2338.

  20. 20.

    Elliott IA, Epelboym I, Winner M, Allendorf JD, Haigh PI. Population-Level Incidence and Predictors of Surgically Induced Diabetes and Exocrine Insufficiency after Partial Pancreatic Resection. The Permanente journal. 2017;21.

  21. 21.

    Sakata N, Egawa S, Rikiyama T, et al. Computed tomography reflected endocrine function of the pancreas. J. Gastrointest. Surg. 2011;15(3):525-532.

    Article  Google Scholar 

  22. 22.

    Jang M, Park HW, Huh J, et al. Predictive value of sarcopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI. Eur. Radiol. 2018.

  23. 23.

    Pecorelli N, Carrara G, De Cobelli F, et al. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. Br. J. Surg. 2016;103(4):434-442.

    CAS  Article  Google Scholar 

  24. 24.

    Okumura S, Kaido T, Hamaguchi Y, et al. Visceral Adiposity and Sarcopenic Visceral Obesity are Associated with Poor Prognosis After Resection of Pancreatic Cancer. Ann. Surg. Oncol. 2017;24(12):3732-3740.

    Article  Google Scholar 

  25. 25.

    Nagakawa Y, Nakamura Y, Honda G, et al. Learning curve and surgical factors influencing the surgical outcomes during the initial experience with laparoscopic pancreaticoduodenectomy. J. Hepatobiliary Pancreat. Sci. 2018;25(11):498-507.

    Article  Google Scholar 

  26. 26.

    Yun SP, Seo HI, Kim S, Kim DU, Baek DH. Does the pancreatic volume reduction rate using serial computed tomographic volumetry predict new onset diabetes after pancreaticoduodenectomy? Medicine (Baltimore). 2017;96(13):e6491.

    Article  Google Scholar 

  27. 27.

    Oh HM, Yoon YS, Han HS, Kim JH, Cho JY, Hwang DW. Risk factors for pancreatogenic diabetes after pancreaticoduodenectomy. Korean journal of hepato-biliary-pancreatic surgery. 2012;16(4):167-171.

    Article  Google Scholar 

  28. 28.

    Matveyenko AV, Veldhuis JD, Butler PC. Mechanisms of impaired fasting glucose and glucose intolerance induced by an approximate 50% pancreatectomy. Diabetes. 2006;55(8):2347-2356.

    CAS  Article  Google Scholar 

  29. 29.

    Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881-887.

    CAS  Article  Google Scholar 

  30. 30.

    American Diabetes Association. The Staggering Cost of Diabetes. http://www.diabetes.org/diabetes-basics/statistics/infographics/adv-staggering-cost-of-diabetes.html. Accessed December 1, 2018.

  31. 31.

    Lv X, Qiao W, Leng Y, Wu L, Zhou Y. Impact of diabetes mellitus on clinical outcomes of pancreatic cancer after surgical resection: A systematic review and meta-analysis. PLoS One. 2017;12(2):e0171370.

    Article  Google Scholar 

Download references


The statistical analysis for this project was supported in part by the National Institutes of Health through Grant Number UL1-TR-001857.



Author information



Corresponding author

Correspondence to Alessandro Furlan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

IRB approved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donovan, A.L., Furlan, A., Borhani, A.A. et al. Evaluation of clinical and imaging biomarkers for the prediction of new onset diabetes following pancreatic resection. Abdom Radiol (2021). https://doi.org/10.1007/s00261-020-02943-3

Download citation


  • Diabetes
  • Computed tomography
  • Pancreatic resection
  • Hepatic steatosis