Correlation between incidental fat deposition in the liver and pancreas in asymptomatic individuals

A Correction to this article was published on 15 November 2019

This article has been updated

Abstract

Purpose

To explore the utility of two different fat quantification methods in the liver and pancreas and to test the accuracy of multi-echo Dixon as a single sequence in detecting early stage of fat deposition.

Methods

58 healthy potential liver donors underwent abdominal 3T MRI, prospectively. Single-voxel MR Spectroscopy (MRS), dual-echo Dixon, and multi-echo Dixon were performed. Two independent readers obtained proton density fat fraction (PDFF) of the liver and pancreas by placing ROIs on the 2 Dixon sequences. Correlation between the two PDFF measurements was assessed in the liver and pancreas. Values in the liver were also compared to those obtained by MRS.

Results

PDFF in the liver was 6.3 ± 4.2%, 5.5 ± 3.9%, and 5.1 ± 4.1% by MRS, dual-echo Dixon, and multi-echo Dixon, respectively. Dual-echo Dixon and multi-echo Dixon showed good correlation in PDFF quantification of the liver (r = 0.82, p < 0.0005). Multi-echo Dixon showed a good correlation (r = 0.72, p = 0.0005) between the fat measured in the liver and in the pancreas. To differentiate between normal (PDFF ≤ 6%) and mild fat deposition (PDFF: 6–33%) in the liver, analysis showed sensitivity, specificity, and accuracy of 74%, 81%, and 80% for dual-echo Dixon and 85%, 96%, and 89% for multi-echo Dixon, respectively. Mean PDFF in the pancreas was 7.2 ± 2.8% and 6.7 ± 3.3%, by dual-echo and multi-echo Dixon, respectively. Dual-echo Dixon and multi-echo Dixon showed good correlation in PDFF quantification of the pancreas (r = 0.58, p < 0.0005).

Conclusion

Multi-echo Dixon in liver has high accuracy in distinguishing between subjects with normal liver fat and those with mildly elevated liver fat. Multi-echo Dixon can be used to screen for early fat deposition in the liver and pancreas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 15 November 2019

    Unfortunately the article was published with a spell error in the co-author names ���Ankur Pandy and Pallavi Pandy���. The correct co-author names should be Ankur Pandey and Pallavi Pandey���.

References

  1. 1.

    M. Hamaguchi, T. Kojima, N. Takeda, T. Nakagawa, H. Taniguchi, K. Fujii, T. Omatsu, T. Nakajima, H. Sarui, M. Shimazaki, T. Kato, J. Okuda, K. Ida, The metabolic syndrome as a predictor of nonalcoholic fatty liver disease, Annals of internal medicine 143(10) (2005) 722-8.

    CAS  Article  Google Scholar 

  2. 2.

    K. Omagari, Y. Kadokawa, J. Masuda, I. Egawa, T. Sawa, H. Hazama, K. Ohba, H. Isomoto, Y. Mizuta, K. Hayashida, K. Murase, T. Kadota, I. Murata, S. Kohno, Fatty liver in non-alcoholic non-overweight Japanese adults: incidence and clinical characteristics, Journal of gastroenterology and hepatology 17(10) (2002) 1098-105.

    Article  Google Scholar 

  3. 3.

    J.M. Clark, A.M. Diehl, Nonalcoholic fatty liver disease: an underrecognized cause of cryptogenic cirrhosis, Jama 289(22) (2003) 3000-4.

    Article  Google Scholar 

  4. 4.

    E.-J.M. van Geenen, M.M. Smits, T.C.M.A. Schreuder, D.L. van der Peet, E. Bloemena, C.J.J. Mulder, Nonalcoholic Fatty Liver Disease Is Related to Nonalcoholic Fatty Pancreas Disease, Pancreas 39(8) (2010) 1185-1190.

    Article  Google Scholar 

  5. 5.

    J. Chai, P. Liu, E. Jin, T. Su, J. Zhang, K. Shi, X.U. Hong, J. Yin, H. Yu, MRI chemical shift imaging of the fat content of the pancreas and liver of patients with type 2 diabetes mellitus, Experimental and therapeutic medicine 11(2) (2016) 476-480.

    CAS  Article  Google Scholar 

  6. 6.

    K.G. Tolman, A.S. Dalpiaz, Treatment of non-alcoholic fatty liver disease, Ther Clin Risk Manag 3(6) (2007) 1153-63.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    A.E. Bohte, J.R. van Werven, S. Bipat, J. Stoker, The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis, European Radiology 21(1) (2011) 87-97.

    Article  Google Scholar 

  8. 8.

    N.F. Schwenzer, F. Springer, C. Schraml, N. Stefan, J. Machann, F. Schick, Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance, Journal of hepatology 51(3) (2009) 433-45.

    Article  Google Scholar 

  9. 9.

    T. Hayashi, S. Saitoh, J. Takahashi, Y. Tsuji, K. Ikeda, M. Kobayashi, Y. Kawamura, T. Fujii, M. Inoue, T. Miyati, H. Kumada, Hepatic fat quantification using the two-point Dixon method and fat color maps based on non-alcoholic fatty liver disease activity score, Hepatology Research (2016) n/a-n/a.

  10. 10.

    A. Qayyum, MR spectroscopy of the liver: principles and clinical applications, Radiographics: a review publication of the Radiological Society of North America, Inc 29(6) (2009) 1653-64.

    Article  Google Scholar 

  11. 11.

    H. Hetterich, C. Bayerl, A. Peters, M. Heier, B. Linkohr, C. Meisinger, S. Auweter, S.A.R. Kannengießer, H. Kramer, B. Ertl-Wagner, F. Bamberg, Feasibility of a three-step magnetic resonance imaging approach for the assessment of hepatic steatosis in an asymptomatic study population, European Radiology 26(6) (2016) 1895-1904.

    Article  Google Scholar 

  12. 12.

    M.R. Bashir, X. Zhong, M.D. Nickel, G. Fananapazir, S.A. Kannengiesser, B. Kiefer, B.M. Dale, Quantification of hepatic steatosis with a multistep adaptive fitting MRI approach: prospective validation against MR spectroscopy, AJR. American journal of roentgenology 204(2) (2015) 297-306.

    Article  Google Scholar 

  13. 13.

    X. Zhong, M.D. Nickel, S.A. Kannengiesser, B.M. Dale, B. Kiefer, M.R. Bashir, Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging, Magnetic resonance in medicine 72(5) (2014) 1353-65.

    Article  Google Scholar 

  14. 14.

    K. Gangadhar, K.N. Chintapalli, G. Cortez, S.V. Nair, MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods, The Egyptian Journal of Radiology and Nuclear Medicine 45(3) (2014) 619-626.

    Article  Google Scholar 

  15. 15.

    M.A. Fischer, D.A. Raptis, M. Montani, R. Graf, P.A. Clavien, D. Nanz, H. Alkadhi, H. Scheffel, Liver fat quantification by dual-echo MR imaging outperforms traditional histopathological analysis, Academic radiology 19(10) (2012) 1208-14.

    Article  Google Scholar 

  16. 16.

    R. Kreis, Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts, NMR in biomedicine 17(6) (2004) 361-81.

    CAS  Article  Google Scholar 

  17. 17.

    N. Pineda, P. Sharma, Q. Xu, X. Hu, M. Vos, D.R. Martin, Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy--a rapid and accurate technique, Radiology 252(2) (2009) 568-76.

    Article  Google Scholar 

  18. 18.

    T. Yokoo, M. Bydder, G. Hamilton, M.S. Middleton, A.C. Gamst, T. Wolfson, T. Hassanein, H.M. Patton, J.E. Lavine, J.B. Schwimmer, C.B. Sirlin, Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T, Radiology 251(1) (2009) 67-76.

    Article  Google Scholar 

  19. 19.

    T. Yokoo, M. Shiehmorteza, G. Hamilton, T. Wolfson, M.E. Schroeder, M.S. Middleton, M. Bydder, A.C. Gamst, Y. Kono, A. Kuo, H.M. Patton, S. Horgan, J.E. Lavine, J.B. Schwimmer, C.B. Sirlin, Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T, Radiology 258(3) (2011) 749-59.

    Article  Google Scholar 

  20. 20.

    I.S. Idilman, H. Aniktar, R. Idilman, G. Kabacam, B. Savas, A. Elhan, A. Celik, K. Bahar, M. Karcaaltincaba, Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy, Radiology 267(3) (2013) 767-75.

    Article  Google Scholar 

  21. 21.

    B.K. Kang, E.S. Yu, S.S. Lee, Y. Lee, N. Kim, C.B. Sirlin, E.Y. Cho, S.K. Yeom, J.H. Byun, S.H. Park, M.G. Lee, Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard, Investigative radiology 47(6) (2012) 368-75.

    CAS  Article  Google Scholar 

  22. 22.

    J.P. Kuhn, D. Hernando, A. Munoz del Rio, M. Evert, S. Kannengiesser, H. Volzke, B. Mensel, R. Puls, N. Hosten, S.B. Reeder, Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results, Radiology 265(1) (2012) 133-42.

    Article  Google Scholar 

  23. 23.

    G. Hamilton, T. Yokoo, M. Bydder, I. Cruite, M.E. Schroeder, C.B. Sirlin, M.S. Middleton, In vivo characterization of the liver fat (1)H MR spectrum, NMR in biomedicine 24(7) (2011) 784-90.

    Article  Google Scholar 

  24. 24.

    A. Tang, A. Desai, G. Hamilton, T. Wolfson, A. Gamst, J. Lam, L. Clark, J. Hooker, T. Chavez, B.D. Ang, M.S. Middleton, M. Peterson, R. Loomba, C.B. Sirlin, Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease, Radiology 274(2) (2015) 416-25.

    Article  Google Scholar 

  25. 25.

    G.H. Kang, I. Cruite, M. Shiehmorteza, T. Wolfson, A.C. Gamst, G. Hamilton, M. Bydder, M.S. Middleton, C.B. Sirlin, Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms, Journal of magnetic resonance imaging : JMRI 34(4) (2011) 928-34.

    Article  Google Scholar 

  26. 26.

    A. Tang, J. Tan, M. Sun, G. Hamilton, M. Bydder, T. Wolfson, A.C. Gamst, M. Middleton, E.M. Brunt, R. Loomba, J.E. Lavine, J.B. Schwimmer, C.B. Sirlin, Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis, Radiology 267(2) (2013) 422-31.

    Article  Google Scholar 

  27. 27.

    P.E. Sijens, M.A. Edens, S.J. Bakker, R.P. Stolk, MRI-determined fat content of human liver, pancreas and kidney, World journal of gastroenterology 16(16) (2010) 1993-8.

    Article  Google Scholar 

  28. 28.

    N.S. Patel, M.R. Peterson, D.A. Brenner, E. Heba, C. Sirlin, R. Loomba, Association between novel MRI-estimated pancreatic fat and liver histology-determined steatosis and fibrosis in non-alcoholic fatty liver disease, Alimentary pharmacology & therapeutics 37(6) (2013) 630-9.

    CAS  Article  Google Scholar 

Download references

Funding

This study was partially funded by Siemens Healthcare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ihab R. Kamel.

Ethics declarations

Conflict of interest

LP, XZ, and SK are employees of Siemens Healthcare. XZ and SK contributed to the development of Dixon sequences. LP contributed to providing these sequences to our institution and technical supports. The funding organization and its employees did not have any role in the study design, data gathering, and statistical analysis. Other authors do not have any conflict of interest. All authors contributed to drafting the paper and critical revisions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aliyari Ghasabeh, M., Shaghaghi, M., Khoshpouri, P. et al. Correlation between incidental fat deposition in the liver and pancreas in asymptomatic individuals. Abdom Radiol 45, 203–210 (2020). https://doi.org/10.1007/s00261-019-02206-w

Download citation

Keywords

  • Fatty liver
  • Pancreatic fat
  • Steatohepatitis
  • MRI
  • Fat quantification