Skip to main content
Log in

Detection of hepatic steatosis and iron content at 3 Tesla: comparison of two-point Dixon, quantitative multi-echo Dixon, and MR spectroscopy

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare qualitative results obtained from computer-aided dual-ratio analysis on T1-weighted two-point Dixon, with T2*-corrected multi-echo Dixon and T2-corrected multi-echo single-voxel MR spectroscopy sequence (MRS) for evaluation of liver fat and iron at 3T.

Methods and materials

This retrospective, HIPAA-compliant, IRB-approved study included 479 patients with known or suspected liver disease. Two-point Dixon, multi-echo Dixon, and MR spectroscopy sequences were performed for each patient at 3T. A receiver-operating characteristic analysis was performed to compare the diagnostic performance in 80 patients using biopsy as the standard. Sensitivity, specificity, PPV, and NPV of qualitative two-point Dixon results, multi-echo Dixon (PDFF and R2*), and MRS (fat fraction and R2 water) for detection of hepatic steatosis and siderosis were assessed.

Results

Fat fractions obtained from MRS and multi-echo Dixon have equivalent accuracy for detection of hepatic steatosis (AUC, sensitivity and specificity: 0.90 vs 0.88, 0.77 vs. 0.82, and 0.90 vs. 0.82), but the optimal cutoff value is higher for MRS (6.05% vs. 3.4%). The dual-ratio Dixon discrimination technique showed high negative predictive value for detection of hepatic steatosis and siderosis (0.90 and 0.94, respectively). R2* from multi-echo Dixon and R2water from MRS have equivalent accuracy for detection of iron overload at 3T (AUC 0.89 vs. 0.88). The optimal cutoff for R2* and R2water are 60.5 s−1 and 40.85 s−1, respectively.

Conclusion

The computer-aided dual-ratio discrimination with two-point Dixon is a useful qualitative screening tool with high negative predictive value for hepatic steatosis and iron overload. Multi-echo Dixon and MRS have similar accuracy for detection of hepatic steatosis and iron overload at 3 Tesla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. European Association for the Study of the, L., D. European Association for the Study of, and O. European Association for the Study of (2016) EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol, 64(6): p. 1388-402.

    Article  Google Scholar 

  2. Younossi, Z.M., M. Stepanova, M. Afendy, Y. Fang, Y. Younossi, et al. (2011) Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol, 9(6): p. 524-530 e1; quiz e60.

  3. Browning, J.D., L.S. Szczepaniak, R. Dobbins, P. Nuremberg, J.D. Horton, et al. (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology, 40(6): p. 1387-95.

    Article  PubMed  Google Scholar 

  4. Ratziu, V., F. Charlotte, A. Heurtier, S. Gombert, P. Giral, et al. (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology, 128(7): p. 1898-906.

    Article  PubMed  Google Scholar 

  5. Van Beers, B.E., P. Garteiser, B. Leporq, P.E. Rautou, and D. Valla (2017) Quantitative Imaging in Diffuse Liver Diseases. Semin Liver Dis, 37(3): p. 243-258.

    Article  PubMed  Google Scholar 

  6. Pineda, N., P. Sharma, Q. Xu, X. Hu, M. Vos, et al. (2009) Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy–a rapid and accurate technique. Radiology, 252(2): p. 568-76.

    Article  PubMed  Google Scholar 

  7. Yu, H., C.A. McKenzie, A. Shimakawa, A.T. Vu, A.C. Brau, et al. (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging, 26(4): p. 1153-61.

    Article  PubMed  Google Scholar 

  8. Yu, H., A. Shimakawa, C.A. McKenzie, E. Brodsky, J.H. Brittain, et al. (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med, 60(5): p. 1122-34.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bydder, M., T. Yokoo, G. Hamilton, M.S. Middleton, A.D. Chavez, et al. (2008) Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging, 26(3): p. 347-59.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuhn, J.P., D. Hernando, B. Mensel, P.C. Kruger, T. Ittermann, et al. (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging, 39(6): p. 1494-501.

    Article  PubMed  Google Scholar 

  11. Hines, C.D., A. Frydrychowicz, G. Hamilton, D.L. Tudorascu, K.K. Vigen, et al. (2011) T(1) independent, T(2) (*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. J Magn Reson Imaging, 33(4): p. 873-81.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhong, X., M.D. Nickel, S.A. Kannengiesser, B.M. Dale, B. Kiefer, et al. (2014) Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med, 72(5): p. 1353-65.

    Article  PubMed  Google Scholar 

  13. Bashir, M.R., E.M. Merkle, A.D. Smith, and D.T. Boll (2012) Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination. Eur J Radiol, 81(2): p. e101-9.

  14. Wood, J.C., P. Zhang, H. Rienhoff, W. Abi-Saab, and E.J. Neufeld (2015) Liver MRI is more precise than liver biopsy for assessing total body iron balance: a comparison of MRI relaxometry with simulated liver biopsy results. Magn Reson Imaging, 33(6): p. 761-7.

    Article  PubMed  Google Scholar 

  15. Rose, C., P. Vandevenne, E. Bourgeois, N. Cambier, and O. Ernst (2006) Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients. Eur J Haematol, 77(2): p. 145-9.

    Article  CAS  PubMed  Google Scholar 

  16. Lin, H., H. Wei, N. He, C. Fu, S. Cheng, et al. (2018) Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification. Eur Radiol, 28(8): p. 3494-3504.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meisamy, S., C.D. Hines, G. Hamilton, C.B. Sirlin, C.A. McKenzie, et al. (2011) Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology, 258(3): p. 767-75.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Henninger, B., H. Zoller, S. Kannengiesser, X. Zhong, W. Jaschke, et al. (2017) 3D Multiecho Dixon for the Evaluation of Hepatic Iron and Fat in a Clinical Setting. J Magn Reson Imaging, 46(3): p. 793-800.

    Article  PubMed  Google Scholar 

  19. Wood, J.C., C. Enriquez, N. Ghugre, J.M. Tyzka, S. Carson, et al. (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood, 106(4): p. 1460-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alam, M.H., D. Auger, L.A. McGill, G.C. Smith, T. He, et al. (2016) Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron. J Cardiovasc Magn Reson, 18(1): p. 40.

  21. Hetterich, H., C. Bayerl, A. Peters, M. Heier, B. Linkohr, et al. (2016) Feasibility of a three-step magnetic resonance imaging approach for the assessment of hepatic steatosis in an asymptomatic study population. Eur Radiol, 26(6): p. 1895-904.

    Article  PubMed  Google Scholar 

  22. Liu, C.Y., C.A. McKenzie, H. Yu, J.H. Brittain, and S.B. Reeder (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med, 58(2): p. 354-64.

    Article  PubMed  Google Scholar 

  23. Tang, A., J. Tan, M. Sun, G. Hamilton, M. Bydder, et al. (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology, 267(2): p. 422-31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Idilman, I.S., H. Aniktar, R. Idilman, G. Kabacam, B. Savas, et al. (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology, 267(3): p. 767-75.

    Article  PubMed  Google Scholar 

  25. Franca, M., A. Alberich-Bayarri, L. Marti-Bonmati, P. Oliveira, F.E. Costa, et al. (2017) Accurate simultaneous quantification of liver steatosis and iron overload in diffuse liver diseases with MRI. Abdom Radiol (NY), 42(5): p. 1434-1443.

    Article  Google Scholar 

  26. Bashir, M.R., X. Zhong, B.M. Dale, R.T. Gupta, D.T. Boll, et al. (2013) Automated patient-tailored screening of the liver for diffuse steatosis and iron overload using MRI. AJR Am J Roentgenol, 201(3): p. 583-8.

    Article  PubMed  Google Scholar 

  27. Galimberti, S., P. Trombini, D.P. Bernasconi, I. Redaelli, S. Pelucchi, et al. (2015) Simultaneous liver iron and fat measures by magnetic resonance imaging in patients with hyperferritinemia. Scand J Gastroenterol, 50(4): p. 429-38.

    Article  CAS  PubMed  Google Scholar 

  28. Kuhn, J.P., D. Hernando, A. Munoz del Rio, M. Evert, S. Kannengiesser, et al. (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology, 265(1): p. 133-42.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Storey, P., A.A. Thompson, C.L. Carqueville, J.C. Wood, R.A. de Freitas, et al. (2007) R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging, 25(3): p. 540-7.

  30. Banerjee, R., M. Pavlides, E.M. Tunnicliffe, S.K. Piechnik, N. Sarania, et al. (2014) Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol, 60(1): p. 69-77.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Henninger, B., H. Zoller, S. Rauch, M. Schocke, S. Kannengiesser, et al. (2015) Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2-relaxometry and chemical shift-based sequences. Eur Radiol, 25(5): p. 1356-65.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, H., C. Fu, S. Kannengiesser, S. Cheng, J. Shen, et al. (2018) Quantitative analysis of hepatic iron in patients suspected of coexisting iron overload and steatosis using multi-echo single-voxel magnetic resonance spectroscopy: Comparison with fat-saturated multi-echo gradient echo sequence. J Magn Reson Imaging, 48(1): p. 205-213.

    Article  PubMed  Google Scholar 

  33. St Pierre, T.G., P.R. Clark, W. Chua-anusorn, A.J. Fleming, G.P. Jeffrey, et al. (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood, 105(2): p. 855-61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Shanbhogue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Olsen, S., Zhang, H.C. et al. Detection of hepatic steatosis and iron content at 3 Tesla: comparison of two-point Dixon, quantitative multi-echo Dixon, and MR spectroscopy. Abdom Radiol 44, 3040–3048 (2019). https://doi.org/10.1007/s00261-019-02118-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02118-9

Keywords

Navigation