Skip to main content
Log in

Differentiation of hypervascular primary hepatic tumors showing hepatobiliary hypointensity on gadoxetic acid-enhanced magnetic resonance imaging

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To determine the imaging features that help differentiate hypervascular primary hepatic tumors showing hepatobiliary hypointensity on gadoxetic acid MRI.

Methods

This study comprised 148 patients with pathologically proven hypervascular hepatic tumors who underwent gadoxetic acid MRI. Tumors included 23 atypical focal nodular hyperplasias (FNHs), 11 hepatocellular adenomas (HCAs), 15 neuroendocrine tumors (NETs), 25 intrahepatic cholangiocarcinomas (ICCs), and 74 hepatocellular carcinomas (HCCs). MRIs were analyzed for morphologic features, signal intensity, and enhancement pattern of the tumors to determine the differential features using multivariate logistic regression analysis. We evaluated the diagnostic performance of the MRI features for differentiating the five tumor types upon review by two observers.

Results

Multivariate analysis revealed that reverse target sign on hepatobiliary phase in FNHs (p = 0.009), iso or hyperintensity on ADC map in FNHs and HCAs (p = 0.009, < 0.001, respectively), central hypointensity on arterial phase in NETs (p = 0.001), hepatobiliary target sign in ICCs (p = 0.002), the presence of septum and capsule in HCCs (all p < 0.001) were significant independent features of each tumor group over other tumor groups. Diagnostic accuracy for both observers was 98–98.6% for FNHs, 96.6–98% for HCAs, 97.3–98.6% for NETs, 90.5–94.6% for ICCs, and 85.8–93.2% for HCCs.

Conclusions

Ancillary MRI features established in our study can be helpful in the differentiation of hypervascular and hepatobiliary hypointense primary hepatic tumors on gadoxetic acid MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neri E, Bali MA, Ba-Ssalamah A, Boraschi P, Brancatelli G, Alves FC, Grazioli L, Helmberger T, Lee JM, Manfredi R, Marti-Bonmati L, Matos C, Merkle EM, Op De Beeck B, Schima W, Skehan S, Vilgrain V, Zech C, Bartolozzi C (2016) ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 26:921-931. https://doi.org/10.1007/s00330-015-3900-3

    Article  CAS  Google Scholar 

  2. Choi JY, Lee JM, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology 272:635-654. https://doi.org/10.1148/radiol.14132361

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, Han JK, Choi BI (2015) Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 275:97-109. https://doi.org/10.1148/radiol.14140690

    Article  PubMed  Google Scholar 

  4. Hamm B, Staks T, Muhler A, Bollow M, Taupitz M, Frenzel T, Wolf KJ, Weinmann HJ, Lange L (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195:785-792. https://doi.org/10.1148/radiology.195.3.7754011

    Article  CAS  PubMed  Google Scholar 

  5. Stern W, Schick F, Kopp AF, Reimer P, Shamsi K, Claussen CD, Laniado M (2000) Dynamic MR imaging of liver metastases with Gd-EOB-DTPA. Acta Radiol 41:255-262

    Article  CAS  PubMed  Google Scholar 

  6. Chen BB, Hsu CY, Yu CW, Wei SY, Kao JH, Lee HS, Shih TT (2012) Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol 22:171-180. https://doi.org/10.1007/s00330-011-2249-5

    Article  PubMed  Google Scholar 

  7. Ahn SS, Kim MJ, Lim JS, Hong HS, Chung YE, Choi JY (2010) Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology 255:459-466. https://doi.org/10.1148/radiol.10091388

    Article  Google Scholar 

  8. Motosugi U, Ichikawa T, Sou H, Sano K, Tominaga L, Muhi A, Araki T (2010) Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology 256:151-158. https://doi.org/10.1148/radiol.10091885

    Article  PubMed  Google Scholar 

  9. Park HJ, Kim YK, Park MJ, Lee WJ (2013) Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging 38:793-801. https://doi.org/10.1007/s00261-012-9943-x

    Article  Google Scholar 

  10. Yang K, Cheng YS, Yang JJ, Jiang X, Guo JX (2017) Primary hepatic neuroendocrine tumors: multi-modal imaging features with pathological correlations. Cancer Imaging 17:20. https://doi.org/10.1186/s40644-017-0120-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung YE, Kim MJ, Kim YE, Park MS, Choi JY, Kim KW (2013) Characterization of incidental liver lesions: comparison of multidetector CT versus Gd-EOB-DTPA-enhanced MR imaging. PLoS One 8:e66141. https://doi.org/10.1371/journal.pone.0066141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rimola J, Forner A, Reig M, Vilana R, de Lope CR, Ayuso C, Bruix J (2009) Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology 50:791-798. https://doi.org/10.1002/hep.23071

    Article  PubMed  Google Scholar 

  13. Chong YS, Kim YK, Lee MW, Kim SH, Lee WJ, Rhim HC, Lee SJ (2012) Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI. Clin Radiol 67:766-773. https://doi.org/10.1016/j.crad.2012.01.004

    Article  CAS  Google Scholar 

  14. Jeong HT, Kim MJ, Chung YE, Choi JY, Park YN, Kim KW (2013) Gadoxetate disodium-enhanced MRI of mass-forming intrahepatic cholangiocarcinomas: imaging-histologic correlation. AJR Am J Roentgenol 201:W603-611. https://doi.org/10.2214/ajr.12.10262

    Article  PubMed  Google Scholar 

  15. Kang Y, Lee JM, Kim SH, Han JK, Choi BI (2012) Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 264:751-760. https://doi.org/10.1148/radiol.12112308

    Article  PubMed  Google Scholar 

  16. Fujiwara H, Sekine S, Onaya H, Shimada K, Mikata R, Arai Y (2011) Ring-like enhancement of focal nodular hyperplasia with hepatobiliary-phase Gd-EOB-DTPA-enhanced magnetic resonance imaging: radiological-pathological correlation. Jpn J Radiol 29:739-743. https://doi.org/10.1007/s11604-011-0624-4

    Article  PubMed  Google Scholar 

  17. Yoon JH, Kim JY (2014) Atypical Findings of Focal Nodular Hyperplasia with Gadoxetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging. Iran J Radiol 11:e9269. https://doi.org/10.5812/iranjradiol.9269

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grazioli L, Bondioni MP, Haradome H, Motosugi U, Tinti R, Frittoli B, Gambarini S, Donato F, Colagrande S (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520-529. https://doi.org/10.1148/radiol.11101742

    Article  Google Scholar 

  19. van Kessel CS, de Boer E, ten Kate FJ, Brosens LA, Veldhuis WB, van Leeuwen MS (2013) Focal nodular hyperplasia: hepatobiliary enhancement patterns on gadoxetic-acid contrast-enhanced MRI. Abdom Imaging 38:490-501. https://doi.org/10.1007/s00261-012-9916-0

    Article  Google Scholar 

  20. Hwang YH, Lee SJ, Kang KY, Hur JS, Yee ST (2017) Immunosuppressive Effects of Bryoria sp. (Lichen-Forming Fungus) Extracts via Inhibition of CD8(+) T-Cell Proliferation and IL-2 Production in CD4(+) T Cells. J Microbiol Biotechnol 27:1189-1197. https://doi.org/10.4014/jmb.1701.01080

    Article  CAS  PubMed  Google Scholar 

  21. Ishigami K, Yoshimitsu K, Nishihara Y, Irie H, Asayama Y, Tajima T, Nishie A, Hirakawa M, Ushijima Y, Okamoto D, Taketomi A, Honda H (2009) Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images: correlation with histopathologic findings. Radiology 250:435-443. https://doi.org/10.1148/radiol.2501071702

    Article  Google Scholar 

  22. Elsayes KM, Hooker JC, Agrons MM, Kielar AZ, Tang A, Fowler KJ, Chernyak V, Bashir MR, Kono Y, Do RK, Mitchell DG, Kamaya A, Hecht EM, Sirlin CB (2017) 2017 Version of LI-RADS for CT and MR Imaging: An Update. Radiographics 37:1994-2017. https://doi.org/10.1148/rg.2017170098

    Article  Google Scholar 

  23. Choi SH, Byun JH, Lim YS, Yu E, Lee SJ, Kim SY, Won HJ, Shin YM, Kim PN (2016) Diagnostic criteria for hepatocellular carcinoma 3 cm with hepatocyte-specific contrast-enhanced magnetic resonance imaging. J Hepatol 64:1099-1107. https://doi.org/10.1016/j.jhep.2016.01.018

    Article  PubMed  Google Scholar 

  24. Kadoya M, Matsui O, Takashima T, Nonomura A (1992) Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology 183:819-825. https://doi.org/10.1148/radiology.183.3.1316622

    Article  CAS  PubMed  Google Scholar 

  25. Suh YJ, Kim MJ, Choi JY, Park YN, Park MS, Kim KW (2011) Differentiation of hepatic hyperintense lesions seen on gadoxetic acid-enhanced hepatobiliary phase MRI. AJR Am J Roentgenol 197:W44-52. https://doi.org/10.2214/ajr.10.5845

    Article  Google Scholar 

  26. Chen ZG, Xu L, Zhang SW, Huang Y, Pan RH (2015) Lesion discrimination with breath-hold hepatic diffusion-weighted imaging: a meta-analysis. World J Gastroenterol 21:1621-1627. https://doi.org/10.3748/wjg.v21.i5.1621

    Article  PubMed  PubMed Central  Google Scholar 

  27. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47-66. https://doi.org/10.1148/radiol.09090021

    Article  Google Scholar 

  28. Grazioli L, Olivetti L, Mazza G, Bondioni MP (2013) MR Imaging of Hepatocellular Adenomas and Differential Diagnosis Dilemma. Int J Hepatol 2013:374170. https://doi.org/10.1155/2013/374170

    Article  PubMed  PubMed Central  Google Scholar 

  29. An HS, Park HS, Kim YJ, Jung SI, Jeon HJ (2013) Focal nodular hyperplasia: characterisation at gadoxetic acid-enhanced MRI and diffusion-weighted MRI. Br J Radiol 86:20130299. https://doi.org/10.1259/bjr.20130299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karam AR, Shankar S, Surapaneni P, Kim YH, Hussain S (2010) Focal nodular hyperplasia: central scar enhancement pattern using Gadoxetate Disodium. J Magn Reson Imaging 32:341-344. https://doi.org/10.1002/jmri.22262

    Article  PubMed  Google Scholar 

  31. Zech CJ, Grazioli L, Breuer J, Reiser MF, Schoenberg SO (2008) Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol 43:504-511. https://doi.org/10.1097/rli.0b013e3181705cd1

    Article  PubMed  Google Scholar 

  32. Joo I, Lee JM, Lee SM, Lee JS, Park JY, Han JK (2016) Diagnostic accuracy of liver imaging reporting and data system (LI-RADS) v2014 for intrahepatic mass-forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid-enhanced MRI. J Magn Reson Imaging 44:1330-1338. https://doi.org/10.1002/jmri.25287

    Article  Google Scholar 

  33. Bader TR, Semelka RC, Chiu VC, Armao DM, Woosley JT (2001) MRI of carcinoid tumors: spectrum of appearances in the gastrointestinal tract and liver. J Magn Reson Imaging 14:261-269

    Article  CAS  PubMed  Google Scholar 

  34. Woodard PK, Feldman JM, Paine SS, Baker ME (1995) Midgut carcinoid tumors: CT findings and biochemical profiles. J Comput Assist Tomogr 19:400-405

    Article  CAS  PubMed  Google Scholar 

  35. Kim JE, Lee WJ, Kim SH, Rhim H, Song HJ, Park CK (2011) Three-phase helical computed tomographic findings of hepatic neuroendocrine tumors: pathologic correlation with revised WHO classification. J Comput Assist Tomogr 35:697-702. https://doi.org/10.1097/rct.0b013e318231c6d8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.J., Kim, Y.K., Min, J.H. et al. Differentiation of hypervascular primary hepatic tumors showing hepatobiliary hypointensity on gadoxetic acid-enhanced magnetic resonance imaging. Abdom Radiol 44, 3115–3126 (2019). https://doi.org/10.1007/s00261-019-02068-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02068-2

Keywords

Navigation