Advertisement

Abdominal Radiology

, Volume 44, Issue 2, pp 406–421 | Cite as

Role of dual energy CT to improve diagnosis of non-traumatic abdominal vascular emergencies

  • Khalid W. Shaqdan
  • Anushri Parakh
  • Avinash R. Kambadakone
  • Dushyant V. SahaniEmail author
Invited article

Abstract

Computed tomography angiography (CTA) is the modality of choice to evaluate abdominal vascular emergencies (AVE). CTA protocols are often complex and require acquisition of multiple phases to enable a variety of diagnosis such as acute bleeding, pseudoaneurysms, bowel ischemia, and dissection. With single energy CT (SECT), differentiating between calcium, coagulated blood, and contrast agents can be challenging based on their attenuation, especially when in small quantity or present as a mixture. With dual-energy CT (DECT), virtual monoenergetic (VM) and material decomposition (MD) image reconstructions enable more robust tissue characterization, improve contrast-enhancement, and reduce beam hardening artifacts. This article will demonstrate how radiologists can utilize DECT for various clinical scenarios in assessment of non-traumatic AVE.

Keywords

Dual-energy CT Abdominal vascular emergencies Virtual monoenergetic images Material decomposition images 

Notes

Compliance with ethical standards

Funding

This study was not funded.

Conflict of interest

Dushyant Sahani received grant support from GE healthcare, Advisory Board of Allena Pharma, receives royalties from Elsevier publishing for textbook on Abdomen Imaging. Other authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Genovese EA, Fonio P, Floridi C, et al. (2013) Abdominal vascular emergencies: US and CT assessment. Crit Ultrasound J 5(Suppl 1):S10PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hansen NJ (2016) Computed tomographic angiography of the abdominal aorta. Radiol Clin N Am 54(1):35–54PubMedGoogle Scholar
  3. 3.
    Fuentes-Orrego JM, Pinho D, Kulkarni NM, et al. (2014) New and evolving concepts in CT for abdominal vascular imaging. RadioGraphics 34(5):1363–1384PubMedGoogle Scholar
  4. 4.
    Kondo H, Kanematsu M, Goshima S, et al. (2010) Body size indexes for optimizing iodine dose for aortic and hepatic enhancement at multidetector CT: comparison of total body weight, lean body weight, and blood volume. Radiology 254(1):1639Google Scholar
  5. 5.
    Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691PubMedGoogle Scholar
  6. 6.
    Schindera ST, Tock I, Marin D, et al. (2010) Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: an in vitro and in vivo study. Radiology 256:528–535PubMedGoogle Scholar
  7. 7.
    Campbell SG, Croskerry P, Bond WF (2007) Profiles in patient safety: a “perfect storm” in the emergency department. Acad Emerg Med 14:743–749PubMedGoogle Scholar
  8. 8.
    Pinto A, Reginelli A, Pinto F, et al. (2016) Errors in imaging patients in the emergency setting. Br J Radiol 89(1061):20150914PubMedPubMedCentralGoogle Scholar
  9. 9.
    Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2):327–342PubMedGoogle Scholar
  10. 10.
    Megibow AJ, Sahani D (2012) Best practice: implementation and use of abdominal dual-energy CT in routine patient care. AJR Am J Roentgenol 199(5 Suppl):S71–S77PubMedGoogle Scholar
  11. 11.
    Grajo JR, Patino M, Prochowski A, Sahani DV (2016) Dual energy CT in practice: basic principles and applications. Appl Radiol 45:6–12Google Scholar
  12. 12.
    McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multienergy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653PubMedPubMedCentralGoogle Scholar
  13. 13.
    Shuman WP, O’Malley RB, Busey JM, Ramos MM, Koprowicz KM (2017) Prospective comparison of dual-energy CT aortography using 70% reduced iodine dose versus single-energy CT aortography using standard iodine dose in the same patient. Abdom Radiol (NY) 42(3):759–765Google Scholar
  14. 14.
    Kaza RK, Ananthakrishnan L, Kambadakone A, Platt JF (2017) Update of dual-energy CT applications in the genitourinary tract. AJR Am J Roentgenol 208(6):1185–1192PubMedGoogle Scholar
  15. 15.
    Postma AA, Das M, Stadler AA, Wildberger JE (2015) Dual-Energy CT: what the neuroradiologist should know. Curr Radiol Rep 3:16PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kalisz K, Halliburton S, Abbara S, et al. (2017) Update on cardiovascular applications of multienergy CT. Radiographics 37(7):1955–1974PubMedGoogle Scholar
  17. 17.
    Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36:57–68PubMedGoogle Scholar
  18. 18.
    Almeida IP, Schyns LE, Öllers MC, et al. (2017) Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 44(1):171–179PubMedGoogle Scholar
  19. 19.
    Wang L, Liu B, Wu XW, et al. (2012) Correlation between CT attenuation value and iodine concentration in vitro: discrepancy between gemstone spectral imaging on single-source dual-energy CT and traditional polychromatic X-ray imaging. J Med Imaging Radiat Oncol 56:379–383PubMedGoogle Scholar
  20. 20.
    Matsuda I, Akahane M, Sato J, et al. (2012) Precision of the measurement of CT numbers: comparison of dual-energy CT spectral imaging with fast kVp switching and conventional CT with phantoms. Jpn J Radiol 30:34–39PubMedGoogle Scholar
  21. 21.
    Coursey CA, Nelson RC, Boll DT, et al. (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 30(4):1037–1055PubMedGoogle Scholar
  22. 22.
    Patino M, Prochowski A, Agrawal MD, et al. (2016) Material separation using dual-energy CT: current and emerging applications. Radiographics 33(4):1087–1105Google Scholar
  23. 23.
    Sellerer T, Noël PB, Patino M, et al. (2018) Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur Radiol 7:2745–2755Google Scholar
  24. 24.
    Im AL, Lee YH, Bang DH, Yoon KH, Park SH (2013) Dual energy CT in patients with acute abdomen; is it possible for virtual non-enhanced images to replace true non-enhanced images? Emerg Radiol 20:475–483PubMedGoogle Scholar
  25. 25.
    Borhani AA, Kulzer M, Iranpour N, et al. (2017) Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol 42:710–717Google Scholar
  26. 26.
    Zhao YE, Wang ZJ, Zhou CS (2014) Multidetector computed tomography of superior mesenteric artery: anatomy and pathologies. Can Assoc Radiol J. 65:267–274PubMedGoogle Scholar
  27. 27.
    Cordeiro MA, Lima JA (2006) Atherosclerotic plaque characterization by multidetector row computed tomography angiography. J Am Coll Cardiol 47(8 Suppl):C40–C47PubMedGoogle Scholar
  28. 28.
    Harnik IG, Brandt LJ (2010) Mesenteric venous thrombosis. Vasc Med 15:407–418PubMedGoogle Scholar
  29. 29.
    Ascenti G, Sofia C, Mazziotti S, et al. (2016) Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma. Clin Radiol. 71(9):938.e1–938.e9Google Scholar
  30. 30.
    Howard DP, Sideso E, Handa A, et al. (2014) Incidence, risk factors, outcome and projected future burden of acute aortic dissection. Ann Cardiothorac Sur. 3:278–284Google Scholar
  31. 31.
    Pinho DF, Kulkarni NM, Krishnaraj A, Kalva SP, Sahani DV (2013) Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur Radiol 23(2):351–359PubMedGoogle Scholar
  32. 32.
    Vaidya S, Dighe M (2010) Spontaneous celiac artery dissection and its management. J Radiol Case Rep 4:30–33PubMedPubMedCentralGoogle Scholar
  33. 33.
    Jesinger RA, Thoreson AA, Lamba R (2013) Abdominal and pelvic aneurysms and pseudoaneurysms: imaging review with clinical, radiologic, and treatment correlation. Radiographics 33:E71–E96PubMedGoogle Scholar
  34. 34.
    Wortman JR, Uyeda JW, Fulwadhva UP, Sodickson AD (2018) Dual-energy CT for abdominal and pelvic trauma. Radiographic 38(2):586–602Google Scholar
  35. 35.
    Machida H, Tanaka I, Fukui R, et al. (2016) Dual-energy spectral CT: various clinical vascular applications. Radiographics 36(4):1215–1232PubMedGoogle Scholar
  36. 36.
    Maturen KE, Kaza RK, Liu PS, et al. (2012) “Sweet spot” for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr 36:83–87PubMedPubMedCentralGoogle Scholar
  37. 37.
    Martin SS, Wichmann JL, Scholtz JE, et al. (2017) Noise-optimized virtual monoenergetic dual-energy CT improves diagnostic accuracy for the detection of active arterial bleeding of the abdomen. J Vasc Interv Radiol 28(9):1257–1266PubMedGoogle Scholar
  38. 38.
    Chandarana H, Godoy MC, Vlahos I, et al. (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology 249:692–700PubMedGoogle Scholar
  39. 39.
    Buffa V, Solazzo A, D’Auria V, et al. (2014) Dual-source dual-energy CT: dose reduction after endovascular abdominal aortic aneurysm repair. Radiol Med 119(12):934–941PubMedGoogle Scholar
  40. 40.
    Flors L, Leiva-Salinas C, Norton PT, Patrie JT, Hagspiel KD (2013) Endoleak detection after endovascular repair of thoracic aortic aneurysm using dual-source dual-energy CT: suitable scanning protocols and potential radiation dose reduction. AJR Am J Roentgenol 200(2):451–460PubMedGoogle Scholar
  41. 41.
    Stolzmann P, Frauenfelder T, Pfammatter T, et al. (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691PubMedGoogle Scholar
  42. 42.
    Fujii T, Morita H, Sutoh T, et al. (2014) Arteriovenous malformation detected by small bowel endoscopy. Case Rep Gastroenterol 8(2):324–328PubMedPubMedCentralGoogle Scholar
  43. 43.
    Dalle I, Geboes K (2002) Vascular lesions of the gastrointestinal tract. Acta Gastroenterol Belg 65(4):213–219PubMedGoogle Scholar
  44. 44.
    Makhoul F, Kaur P, Johnston TD, et al. (2008) Arteriovenous malformation of the pancreas: a case report and review of literature. Int J Angiol 17(4):211–213PubMedPubMedCentralGoogle Scholar
  45. 45.
    Guo Y, Ou SX, Qian M, Zeng X, Li B (2015) Dual-energy CT angiography for the diagnosis of intracranial dural arteriovenous fistula. Int J Clin Exp Med 8(5):7802–7808PubMedPubMedCentralGoogle Scholar
  46. 46.
    Postma AA, Hofman PA, Stadler AA, et al. (2012) Dual-energy CT of the brain and intracranial vessels. AJR Am J Roentgenol 199:S26–S33PubMedGoogle Scholar
  47. 47.
    Otrakji A, Digumarthy SR, Gullo RL, et al. (2016) Dual-energy CT: spectrum of thoracic abnormalities. Radiographics 36(1):38–52PubMedGoogle Scholar
  48. 48.
    Geffroy Y, Rodallec MH, Boulay-Coletta I, et al. (2011) Multidetector CT angiography in acute gastrointestinal bleeding: why, when, and how. Radiographics 31(3):E35–E46PubMedGoogle Scholar
  49. 49.
    Furlan A, Fakhran S, Federle MP (2009) Spontaneous abdominal hemorrhage: causes, CT findings, and clinical implications. AJR Am J Roentgenol 193(4):1077–1087PubMedGoogle Scholar
  50. 50.
    El-tawil AM (2012) Trends on gastrointestinal bleeding and mortality: where are we standing? World J Gastroenterol 18(11):1154–1158PubMedPubMedCentralGoogle Scholar
  51. 51.
    Artigas JM, Martí M, Soto JA, et al. (2013) Multidetector CT angiography for acute gastrointestinal bleeding: technique and findings. Radiographics 33(5):1453–1470PubMedGoogle Scholar
  52. 52.
    Sin FN, Tsang JP, Siu KL, Ma JK, Yung AW (2012) Medications as causes of intraluminal hyperdensities: what radiologists need to know. Eur J Radiol 81(7):1652–1656PubMedGoogle Scholar
  53. 53.
    Sun H, Hou XY, Xue HD, et al. (2015) Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: image quality, radiation dose and diagnostic performance. Eur J Radiol 84(5):884–891PubMedGoogle Scholar
  54. 54.
    Lambert JW, FitzGerald PF, Edic PM, et al. (2017) The effect of patient diameter on the dual-energy ratio of selected contrast-producing elements. J Comput Assist Tomogr 41(3):505–510PubMedPubMedCentralGoogle Scholar
  55. 55.
    Mongan J, Rathnayake S, Fu Y, et al. (2012) In vivo differentiation of complementary contrast media at dual-energy CT. Radiology 265(1):267–272PubMedPubMedCentralGoogle Scholar
  56. 56.
    Wiesner W, Khurana B, Ji H, Ros PR (2003) CT of acute bowel ischemia. Radiology 226(3):635–650PubMedGoogle Scholar
  57. 57.
    Potretzke TA, Brace CL, Lubner MG, et al. (2015) Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model. Radiology 275(1):119–126PubMedGoogle Scholar
  58. 58.
    Fulwadhva UP, Wortman JR, Sodickson AD (2016) Use of dual-energy CT and iodine maps in evaluation of bowel disease. Radiographics. 36(2):393–406PubMedGoogle Scholar
  59. 59.
    Qiu D, Seeram E (2016) Does iterative reconstruction improve image quality and reduce dose in computed tomography? Radiol Open J 1(2):42–54Google Scholar
  60. 60.
    Willemink MJ, Schilham AM, Leiner T, et al. (2013) Iterative reconstruction does not substantially delay CT imaging in an emergency setting. Insights Imaging 4(3):391–397PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rassouli N, Etesami M, Azz Dhanantwari, et al. (2017) Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 8(6):589–598PubMedPubMedCentralGoogle Scholar
  62. 62.
    Aran S, Shaqdan KW, Abujudeh HH (2014) Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations. Emerg Radiol 21(4):391–405PubMedGoogle Scholar
  63. 63.
    Neogi T, Jansen TL, Dalbeth N (2015) 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol 67(10):2557–2568PubMedPubMedCentralGoogle Scholar
  64. 64.
    Andreucci M, Solomon R, Tasanarong A (2014) Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int .  https://doi.org/10.1155/2014/741018 PubMedPubMedCentralGoogle Scholar
  65. 65.
    Xin L, Yang X, Huang N, et al. (2015) The initial experience of the upper abdominal CT angiography using low-concentration contrast medium on dual energy spectral CT. Abdom Imaging 40:2894–2899PubMedGoogle Scholar
  66. 66.
    Agrawal MD, Oliveira GR, Kalva SP, et al. (2016) Prospective comparison of reduced-iodine-dose virtual monochromatic imaging dataset from dual-energy CT angiography with standard-iodine-dose single-energy CT angiography for abdominal aortic aneurysm. AJR Am J Roentgenol 207(6):W125–W132PubMedGoogle Scholar
  67. 67.
    Uhrig M, Simons D, Kachelrieß M, et al. (2016) Advanced abdominal imaging with dual energy CT is feasible without increasing radiation dose. Cancer Imaging 16(1):15PubMedPubMedCentralGoogle Scholar
  68. 68.
    Schick D, Pratap J (2016) Radiation dose efficiency of dual-energy CT benchmarked against single-source, kilovoltage-optimized scans. Br J Radiol 89(1058):20150486PubMedGoogle Scholar
  69. 69.
    Ho LM, Yoshizumi TT, Hurwitz LM, et al. (2009) Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol 16:1400–1407PubMedGoogle Scholar
  70. 70.
    De Cecco CN, Darnell A, Macias N, et al. (2013) Second-generation dual-energy computed tomography of the abdomen: radiation dose comparison with 64- and 128-row single-energy acquisition. J Comput Assist Tomogr 37:543–546PubMedGoogle Scholar
  71. 71.
    Parakh A, Macri F, Sahani D (2018) Dual-energy computed tomography: dose reduction, series reduction, and contrast load reduction in dual-energy computed tomography. Radiol Clin N Am 56(4):601–624PubMedGoogle Scholar
  72. 72.
    Ascenti G, Mazziotti S, Mileto A, et al. (2012) Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol 199(5):1026–1034PubMedGoogle Scholar
  73. 73.
    Dubourg B, Caudron J, Lestrat JP, et al. (2014) Single-source dual-energy CT angiography with reduced iodine load in patients referred for aortoiliofemoral evaluation before transcatheter aortic valve implantation: impact on image quality and radiation dose. Eur Radiol 24(11):2659–2668PubMedGoogle Scholar
  74. 74.
    Jepperson MA, Cernigliaro JG, el Ibrahim SH, et al. (2015) In vivo comparison of radiation exposure of dual-energy CT versus low-dose CT versus standard CT for imaging urinary calculi. J Endourol 29(2):141–146PubMedPubMedCentralGoogle Scholar
  75. 75.
    Lin XZ, Wu ZY, Tao R, et al. (2012) Dual energy spectral CT imaging of insulinoma-value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol 81(10):2487–2494PubMedGoogle Scholar
  76. 76.
    Shuman WP, Green DE, Busey JM, et al. (2014) Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol 203(3):601–606PubMedGoogle Scholar
  77. 77.
    Takeuchi M, Kawai T, Ito M, et al. (2012) Split-bolus CT-urography using dual-energy CT: feasibility, image quality and dose reduction. Eur J Radiol 81(11):3160–3165PubMedGoogle Scholar
  78. 78.
    American College of Radiology (2018) ACR-AAPM practice parameter for diagnostic reference levels and achievable doses in medical X-ray imaging. ACR website. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/diag-ref-levels.pdf?la=en. Accessed 23 July 23 2018.
  79. 79.
    Wortman JR, Bunch PM, Fulwadhva UP, Bonci GA, Sodickson AD (2016) Dual-energy CT of incidental findings in the abdomen: can we reduce the need for follow-up imaging? AJR Am J Roentgenol 6:W1–W11Google Scholar
  80. 80.
    Deinzer CK, Danova D, Kleb B, et al. (2014) Influence of different iodinated contrast media on the induction of DNA double-strand breaks after in vitro X-ray irradiation. Contrast Media Mol Imaging 9(4):259–267PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Khalid W. Shaqdan
    • 1
  • Anushri Parakh
    • 1
  • Avinash R. Kambadakone
    • 1
  • Dushyant V. Sahani
    • 1
    Email author
  1. 1.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations