Correlation of 3T multiparametric prostate MRI using prostate imaging reporting and data system (PIRADS) version 2 with biopsy as reference standard

Abstract

Objective

To correlate the findings on 3T multiparametric prostate MRI using PIRADS version 2 with prostate biopsy results as the standard of reference.

Materials and methods

134 consecutive treatment naive patients (mean age 64 years, range 41–82 years) underwent MRI-directed prostate biopsy. MRI–TRUS fusion biopsy was used for 77 (77/134 = 57.5%) patients, cognitive fusion for 51 (51/134 = 38.0%) patients, and 6 patients (6/134 = 4.5%) without a target nodule had systematic biopsy only. Out of the 1676 biopsy sites, 237 (237/1676 = 14.1%) were positive on MRI for a PIRADS 3, 4, or 5 nodule. Fifty-eight (58/134, 43.3%) patients had clinically significant prostate cancer (csPCa). The findings on MRI using PIRADS version 2 were correlated with the biopsy results.

Results

The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of PIRADS ≥ 3 for csPCa were 89%, 76.5%, 89.7%, 31.7%, and 98.4%, respectively. The detection rates of csPCa for PIRADS 3, 4, and 5 nodules were 6.1% (4/66), 33.3% (42/126), and 64.4% (29/45), respectively. MRI did not identify a nodule in 23/1676 (1.4%) biopsy sites that contained csPCa. The MRI reader, biopsy operator, method of fusion biopsy, and zonal location of prostate nodule did not significantly affect the odds of having a biopsy result positive for csPCa.

Conclusion

PIRADS ≥ 3 had high specificity and high negative predictive value for csPCa using biopsy results as the standard of reference. The presence of csPCa from a biopsy site was highly unlikely in the absence of a corresponding PIRADS ≥ 3 nodule.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Change history

  • 22 November 2019

    Unfortunately the article was published with a spell error in the co-author name “Hassan Maan”. The correct co-author name should be “Hassaan Maan”.

References

  1. 1.

    Ahmed HU, El-Shater Bosaily A, Brown LC, et al. (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822. https://doi.org/10.1016/S0140-6736(16)32401-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    De Rooij M, Hamoen EHJ, Fütterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol 202:343–351. https://doi.org/10.2214/AJR.13.11046

    Article  Google Scholar 

  3. 3.

    Barentsz JO, Richenberg J, Clements R, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757. https://doi.org/10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    American College of Radiology (2015) MR prostate imaging reporting and data system version 2.0. ACR Webpage

  5. 5.

    Rosenkrantz AB, Verma S, Choyke P, et al. (2016) Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol 196:1613–1618. https://doi.org/10.1016/j.juro.2016.06.079

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Salerno J, Finelli A, Morash C, et al. (2016) Multiparametric magnetic resonance imaging for pre-treatment local staging of prostate cancer: a Cancer Care Ontario clinical practice guideline. Can Urol Assoc J 10:332. https://doi.org/10.5489/cuaj.3823

    Article  Google Scholar 

  7. 7.

    Felker ER, Raman SS, Margolis DJ, et al. (2017) Risk stratification among men with prostate imaging reporting and data system version 2 category 3 transition zone lesions: is biopsy always necessary? Am J Roentgenol 209:1272–1277. https://doi.org/10.2214/AJR.17.18008

    Article  Google Scholar 

  8. 8.

    Sheridan AD, Nath SK, Syed JS, et al. (2017) Risk of clinically significant prostate cancer associated with prostate imaging reporting and data system category 3 (equivocal) lesions identified on multiparametric prostate MRI. Am J Roentgenol . https://doi.org/10.2214/AJR.17.18516

    Article  Google Scholar 

  9. 9.

    Verma S, Choyke PL, Eberhardt SC, et al. (2017) The current state of MR imaging-targeted biopsy techniques for detection of prostate cancer. Radiology 285:343–356. https://doi.org/10.1148/radiol.2017161684

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Weinreb JC, Barentsz JO, Choyke PL, et al. (2016) PI-RADS Prostate imaging—reporting and data system: 2015, version 2. Eur Urol 69:16–40. https://doi.org/10.1016/j.eururo.2015.08.052

    Article  PubMed  Google Scholar 

  11. 11.

    Fedorov A, Khallaghi S, Sánchez CA, et al. (2015) Open-source image registration for MRI–TRUS fusion-guided prostate interventions. Int J Comput Assist Radiol Surg 10:925–934. https://doi.org/10.1007/s11548-015-1180-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sparks R, Bloch BN, Feleppa E, et al. (2015) Multiattribute probabilistic prostate elastic registration (MAPPER): application to fusion of ultrasound and magnetic resonance imaging. Med Phys 42:1153–1163. https://doi.org/10.1118/1.4905104

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Martin PR, Cool DW, Romagnoli C, Fenster A, Ward AD (2014) Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: quantifying the impact of needle delivery error on diagnosis. Med Phys 41:73504. https://doi.org/10.1118/1.4883838

    Article  Google Scholar 

  14. 14.

    Purysko AS, Bittencourt LK, Bullen JA, et al. (2017) Accuracy and interobserver agreement for prostate imaging reporting and data system, version 2, for the characterization of lesions identified on multiparametric MRI of the prostate. Am J Roentgenol 2:1–7. https://doi.org/10.2214/AJR.16.17289

    Article  Google Scholar 

  15. 15.

    Zhao C, Gao G, Fang D, et al. (2016) The efficiency of multiparametric magnetic resonance imaging (mpMRI) using PI-RADS version 2 in the diagnosis of clinically significant prostate cancer. Clin Imaging 40:885–888. https://doi.org/10.1016/j.clinimag.2016.04.010

    Article  PubMed  Google Scholar 

  16. 16.

    Mertan FV, Greer MD, Shih JH, et al. (2016) Prospective evaluation of the prostate imaging reporting and data system version 2 for prostate cancer detection. J Urol 196:690–696. https://doi.org/10.1016/j.juro.2016.04.057

    Article  PubMed  Google Scholar 

  17. 17.

    Kim SH, Choi MS, Kim MJ, Kim YH, Cho SH (2017) Validation of prostate imaging reporting and data system version 2 using an MRI–ultrasound fusion biopsy in prostate cancer diagnosis. Am J Roentgenol 209:800–805. https://doi.org/10.2214/AJR.16.17629

    Article  Google Scholar 

  18. 18.

    Liddell H, Jyoti R, Haxhimolla HZ (2014) Mp-MRI prostate characterised pirads 3 lesions are associated with a low risk of clinically significant prostate cancer-a retrospective review of 92 biopsied pirads 3 lesions. Curr Urol 8:96–100. https://doi.org/10.1159/000365697

    CAS  Article  Google Scholar 

  19. 19.

    Baldisserotto M, Neto EJD, Carvalhal G, et al. (2016) Validation of PI-RADS v. 2 for prostate cancer diagnosis with MRI at 3T using an external phased-array coil. J Magn Reson Imaging 44:1354–1359. https://doi.org/10.1002/jmri.25284

    Article  PubMed  Google Scholar 

  20. 20.

    Rosenkrantz AB, Ginocchio LA, Cornfeld D, et al. (2016) Interobserver reproducibility of the PI-RADS version 2 Lexicon: a multicenter study of six experienced prostate radiologists. Radiology 280:793–804. https://doi.org/10.1148/radiol.2016152542

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Woo S, Suh CH, Kim SY, Cho JY, Kim SH (2017) Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Eur Urol 72:177–188. https://doi.org/10.1016/j.eururo.2017.01.042

    Article  PubMed  Google Scholar 

  22. 22.

    Park SY, Jung DC, Oh YT, et al. (2016) Prostate cancer: pI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology 280:108–116. https://doi.org/10.1148/radiol.16151133

    Article  PubMed  Google Scholar 

  23. 23.

    Muller BG, Shih JH, Sankineni S, et al. (2015) Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging. Radiology 277:741–750. https://doi.org/10.1148/radiol.2015142818

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fütterer JJ, Briganti A, De Visschere P, et al. (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68:1045–1053. https://doi.org/10.1016/j.eururo.2015.01.013

    Article  PubMed  Google Scholar 

  25. 25.

    Wysock JS, Rosenkrantz AB, Huang WC, et al. (2014) A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the profus trial. Eur Urol 66:343–351. https://doi.org/10.1016/j.eururo.2013.10.048

    Article  PubMed  Google Scholar 

  26. 26.

    Puech P, Rouvière O, Renard-Penna R (2013) Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US–MR fusion guidance versus systematic biopsy. Radiology 268:461–469. https://doi.org/10.1148/radiol.13121501/-/DC1

    Article  PubMed  Google Scholar 

  27. 27.

    Cool DW, Zhang X, Romagnoli C, et al. (2015) Evaluation of MRI–TRUS fusion versus cognitive registration accuracy for MRI-targeted, TRUS-guided prostate biopsy. Am J Roentgenol 204:83–91. https://doi.org/10.2214/AJR.14.12681

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

SM: Conceptualization, methodology, data acquisition/analysis, literature review, investigation, validation, writing. MEO and AT: Conceptualization, methodology, data acquisition, clinical studies, literature review, investigation, validation, writing, administration, supervision. SG, KJ, MM, and BS: Conceptualization, methodology, clinical studies, literature review, investigation, validation, writing. LZ: Methodology, literature review, literature review, investigation, data analysis, writing. HM: Conceptualization, methodology, data acquisition/analysis, literature review, investigation, writing.

Corresponding author

Correspondence to Shobhit Mathur.

Ethics declarations

Funding

None.

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Waived by institutional Research Ethics Board for this retrospective study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathur, S., O’Malley, M.E., Ghai, S. et al. Correlation of 3T multiparametric prostate MRI using prostate imaging reporting and data system (PIRADS) version 2 with biopsy as reference standard. Abdom Radiol 44, 252–258 (2019). https://doi.org/10.1007/s00261-018-1696-8

Download citation

Keywords

  • Prostate MRI
  • PI-RADS
  • Prostate biopsy
  • Prostate cancer