Advertisement

Effect of gantry rotation speed and scan mode on peristalsis motion artifact frequency and severity at abdominal CT

  • Rutwik Shah
  • Rhanna Khoram
  • Jack W. Lambert
  • Yuxin Sun
  • Zhen J. Wang
  • Emily M. Webb
  • Benjamin M. Yeh
Article

Abstract

Purpose

The purpose of the study was to understand the effect of CT gantry speed and axial vs. helical scan mode on the frequency and severity of bowel peristalsis artifacts.

Method

We retrospectively identified 150 oncologic abdominopelvic CT scans obtained on a 256 slice CT scanner: 50 scans obtained with Axial mode and 0.5-s gantry rotation time (Slow-Axial); 50 with Axial mode and 0.28-s gantry rotation time (Fast-Axial); and 50 scans with Helical mode and 0.28-s gantry rotation time (Fast-Helical). The patients included 74 women and 76 men with a mean age of 61 years (range 22–85 years). Two readers viewed all CT scans to record the presence and severity of bowel peristalsis artifact, location of artifact (stomach, duodenum/jejunum, ileum, and colon) and artifact location relative to bowel interface (gas-bowel, fluid-bowel, and gas-fluid). The severity of artifacts was recorded subjectively on a 3-point scale, and objectively based on maximum length of the artifact.

Results

Peristalsis artifact was more commonly seen with Slow-Axial scan acquisition (37 of 50 patient scans, or 74%) than Fast-Axial (15 in 50 patient scans, or 30%, p < 0.001) and Fast-Helical (22 of 50 patient scans, or 44%, p < 0.005). The bowel segment distribution and severity of peristalsis artifacts were not significantly different between scan techniques.

Conclusion

Peristalsis artifacts are common at abdominopelvic CT scans. Fast gantry rotation speed significantly reduces the frequency of bowel peristalsis artifacts and should be a consideration when imaging of bowel and structures near bowel is critical.

Keywords

CT Abdomen Cancer imaging Peristalsis artifacts Gantry rotation speed Helical scan Axial Scan 

Notes

Acknowledgements

We would like to thank Jeremy Bancroft Brown MD-PhD candidate, UCSF for reviewing the early draft of our manuscript.

References

  1. 1.
  2. 2.
    Pinto A, Brunese L (2010) Spectrum of diagnostic errors in radiology. World J Radiol 2(10):377–383CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Busardo FP, et al. (2015) Errors and malpractice lawsuits in radiology: what the radiologist needs to know. Radiol Med 120(9):779–784CrossRefPubMedGoogle Scholar
  4. 4.
    Beinfeld MT, Gazelle GS (2005) Diagnostic imaging costs: are they driving up the costs of hospital care? Radiology 235(3):934–939CrossRefPubMedGoogle Scholar
  5. 5.
    Smith-Bindman R, Miglioretti DL, Larson EB (2008) Rising use of diagnostic medical imaging in a large integrated health system. Health Aff (Millwood) 27(6):1491–1502CrossRefGoogle Scholar
  6. 6.
    Bradley D, Bradley KE (2014) The value of diagnostic medical imaging. North Carolina Med J 75(2):121–125CrossRefGoogle Scholar
  7. 7.
    Abelson JA, et al. (2012) Evaluation of a metal artifact reduction technique in tonsillar cancer delineation. Pract Radiat Oncol 2(1):27–34CrossRefPubMedGoogle Scholar
  8. 8.
    Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24(6):1679–1691CrossRefPubMedGoogle Scholar
  9. 9.
    Wilting JE, Timmer J (1999) Artefacts in spiral-CT images and their relation to pitch and subject morphology. Eur Radiol 9(2):316–322CrossRefPubMedGoogle Scholar
  10. 10.
    Alfidi RJ, MacIntyre WJ, Haaga JR (1976) The effects of biological motion on CT resolution. Am J Roentgenol 127(1):11–15CrossRefGoogle Scholar
  11. 11.
    Alfidi RJ, MacIntyre WJ, Haaga JR (1976) The effects of biological motion on CT resolution. AJR Am J Roentgenol 127(1):11–15CrossRefPubMedGoogle Scholar
  12. 12.
    Chao-Kung Y, Orphanoudakis SC, Strohbehn JW (1982) A simulation study of motion artefacts in computed tomography. Physics in Medicine & Biology 27(1):51CrossRefGoogle Scholar
  13. 13.
    Dosda R, et al. (2003) Effect of subcutaneous butylscopolamine administration in the reduction of peristaltic artifacts in 1.5-T MR fast abdominal examinations. Eur Radiol 13(2):294–298PubMedGoogle Scholar
  14. 14.
    Winklhofer S, et al. (2016) Reduction of peristalsis-related gastrointestinal streak artifacts with dual-energy CT: a patient and phantom study. Abdom Radiol (New York) 41(8):1456–1465CrossRefGoogle Scholar
  15. 15.
    Yu H, Wang G (2007) Data consistency based rigid motion artifact reduction in fan-beam CT. IEEE Trans Med Imaging 26(2):249–260CrossRefPubMedGoogle Scholar
  16. 16.
    Dhanantwari AC, Stergiopoulos S, Iakovidis I (2001) Correcting organ motion artifacts in x-ray CT medical imaging systems by adaptive processing. I Theory Med Phys 28(8):1562–1576PubMedGoogle Scholar
  17. 17.
    Rit S, et al. (2009) On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion. Med Phys 36(6):2283–2296CrossRefPubMedGoogle Scholar
  18. 18.
    Leschka S, et al. (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19(12):2896–2903CrossRefPubMedGoogle Scholar
  19. 19.
    Mahabadi AA, et al. (2010) Safety, efficacy, and indications of beta-adrenergic receptor blockade to reduce heart rate prior to coronary CT angiography. Radiology 257(3):614–623CrossRefPubMedGoogle Scholar
  20. 20.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefPubMedGoogle Scholar
  21. 21.
    Fleischmann D, Boas FE (2011) Computed tomography–old ideas and new technology. Eur Radiol 21(3):510–517CrossRefPubMedGoogle Scholar
  22. 22.
    Zerfowski D (1998) Motion artifact compensation in CT. In: Medical Imaging Proceedings SPIE 3338Google Scholar
  23. 23.
    Aschoff AJ, et al. (1999) Pancreas: does hyoscyamine butylbromide increase the diagnostic value of helical CT? Radiology 210(3):861–864CrossRefPubMedGoogle Scholar
  24. 24.
    Rogalla P, et al. (2005) Spasmolysis at CT colonography: butyl scopolamine versus glucagon. Radiology 236(1):184–188CrossRefPubMedGoogle Scholar
  25. 25.
    Kozak RI, et al. (1994) Reduction of bowel motion artifact during digital subtraction angiography: a comparison of hyoscine butylbromide and glucagon. Can Assoc Radiol J 45(3):209–211PubMedGoogle Scholar
  26. 26.
    Froehlich JM, et al. (2009) Aperistaltic effect of hyoscine N-butylbromide versus glucagon on the small bowel assessed by magnetic resonance imaging. Eur Radiol 19(6):1387–1393CrossRefPubMedGoogle Scholar
  27. 27.
    Gutzeit A, et al. (2012) Evaluation of the anti-peristaltic effect of glucagon and hyoscine on the small bowel: comparison of intravenous and intramuscular drug administration. Eur Radiol 22(6):1186–1194CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rutwik Shah
    • 1
    • 2
  • Rhanna Khoram
    • 1
  • Jack W. Lambert
    • 1
  • Yuxin Sun
    • 1
  • Zhen J. Wang
    • 1
  • Emily M. Webb
    • 1
  • Benjamin M. Yeh
    • 1
  1. 1.Department of RadiologyUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations