Abdominal Radiology

, Volume 43, Issue 4, pp 773–785 | Cite as

Principles of ultrasound elastography

  • Arinc Ozturk
  • Joseph R. Grajo
  • Manish Dhyani
  • Brian W. Anthony
  • Anthony E. Samir
Invited article
  • 186 Downloads

Abstract

Tissue stiffness has long been known to be a biomarker of tissue pathology. Ultrasound elastography measures tissue mechanical properties by monitoring the response of tissue to acoustic energy. Different elastographic techniques have been applied to many different tissues and diseases. Depending on the pathology, patient-based factors, and ultrasound operator-based factors, these techniques vary in accuracy and reliability. In this review, we discuss the physical principles of ultrasound elastography, discuss differences between different ultrasound elastographic techniques, and review the advantages and disadvantages of these techniques in clinical practice.

Keywords

Ultrasound Elastography Shear wave Strain 

Notes

Acknowledgment

This work was supported by the NIBIB of the National Institutes of Health under award numbers HHSN268201300071 C and K23 EB020710. The authors are solely responsible for the content and the work does not represent the official views of the National Institutes of Health.

Compliance with ethical standards

Funding

Anthony E. Samir’s effort was funded by the NIBIB of the National Institutes of Health under award numbers HHSN268201300071 C and K23 EB020710.

Conflict of Interest

Anthony E. Samir has received research grants or support from Supersonic Imagine, General Electric, Philips, Toshiba Medical Systems, Hitachi Medical Systems, and Siemens Healthineers. He has also received speaker honoraria from Supersonic Imagine and General Electric and has received consulting fees in related domains from General Electric, Pfizer, Novartis, Bristol Myers Squibb, Jazz Pharmaceuticals, and Parexel. He is a member of the Quantitative Imaging Biomarkers Alliance (QIBA) clinical ultrasound elastography Task Force and is imaging co-chair of the Foundation for the National Institutes of Health Noninvasive Biomarkers of Metabolic Liver Disease (NIMBLE) Biomarkers consortium. He declares no conflict of interest between these various roles and the content of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Shiina T, Nightingale KR, Palmeri ML, et al. (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol 41(5):1126–1147.  https://doi.org/10.1016/j.ultrasmedbio.2015.03.009 PubMedCrossRefGoogle Scholar
  2. 2.
    Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK (2017) Ultrasound elastography: review of techniques and clinical applications. Theranostics 7(5):1303–1329.  https://doi.org/10.7150/thno.18650 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ophir J, Cespedes I, Ponnekanti H, Yazdi T, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 2:111–134CrossRefGoogle Scholar
  4. 4.
    Garra BS (2015) Elastography: history, principles, and technique comparison. Abdom Imaging 40(4):680–697.  https://doi.org/10.1007/s00261-014-0305-8 PubMedCrossRefGoogle Scholar
  5. 5.
    Itoh A, Ueno E, Tohno E, et al. (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou J, Zhou C, Zhan W, et al. (2014) Elastography ultrasound for breast lesions: fat-to-lesion strain ratio vs gland-to-lesion strain ratio. Eur Radiol 24:3171–3177.  https://doi.org/10.1007/s00330-014-3366-8 PubMedCrossRefGoogle Scholar
  7. 7.
    Barr RG (2010) Real-time ultrasound elasticity of the breast: initial clinical results. Ultrasound 2:61–66.  https://doi.org/10.1097/ruq.0b013e3181dc7ce4 CrossRefGoogle Scholar
  8. 8.
    Guibal A, Boularan C, Bruce M, et al. (2012) Evaluation of shearwave elastography for the characterisation of focal liver lesions on ultrasound. Eur Radiol 23:1138–1149.  https://doi.org/10.1007/s00330-012-2692-y PubMedCrossRefGoogle Scholar
  9. 9.
    Lu Q, Wen JX, Huang BJ, Xue LY, Wang WP (2015) Virtual touch quantification using acoustic radiation force impulse (ARFI) technology for the evaluation of focal solid renal lesions: preliminary findings. Clin Radiol 70(12):1376–1381.  https://doi.org/10.1016/j.crad.2015.08.002 PubMedCrossRefGoogle Scholar
  10. 10.
    Samir AE, Dhyani M, Vij A, et al. (2015) Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement. Radiology 274:888–896.  https://doi.org/10.1148/radiol.14140839 PubMedCrossRefGoogle Scholar
  11. 11.
    Samir AE, Allegretti AS, Zhu Q, et al. (2015) Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol.  https://doi.org/10.1186/s12882-015-0120-7 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hong S, Woo OH, Shin HS, et al. (2017) Reproducibility and diagnostic performance of shear wave elastography in evaluating breast solid mass. Clin Imaging 44:42–45.  https://doi.org/10.1016/j.clinimag.2017.03.022 PubMedCrossRefGoogle Scholar
  13. 13.
    Park SY, Choi JS, Han BK, Ko EY, Ko ES (2017) Shear wave elastography in the diagnosis of breast non-mass lesions: factors associated with false negative and false positive results. Eur Radiol 9:3788–3798.  https://doi.org/10.1007/s00330-017-4763-6 CrossRefGoogle Scholar
  14. 14.
    Boehm K, Salomon G, Beyer B, et al. (2015) Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol 193:794–800.  https://doi.org/10.1016/j.juro.2014.09.100 PubMedCrossRefGoogle Scholar
  15. 15.
    Samir AE, Dhyani M, Anvari A, et al. (2015) Shear-wave elastography for the preoperative risk stratification of follicular-patterned lesions of the thyroid: diagnostic accuracy and optimal measurement plane. Radiology 277:565–573.  https://doi.org/10.1148/radiol.2015141627 PubMedCrossRefGoogle Scholar
  16. 16.
    DeWall RJ, Slane LC, Lee KS, Thelen DG (2014) Spatial variations in Achilles tendon shear wave speed. J Biomech 47:2685–2692.  https://doi.org/10.1016/j.jbiomech.2014.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Catheline S, Thomas JL, Wu F, Fink MA (1999) Diffraction field of a low frequency vibrator in soft tissues using transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 4:1013–1019.  https://doi.org/10.1109/58.775668 CrossRefGoogle Scholar
  18. 18.
    Sandrin L, Tanter M, Gennison JL, Catheline S, Fink M (2002) Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 4:436–446CrossRefGoogle Scholar
  19. 19.
    Gennisson JL, Deffieux T, Fink M, Tanter M (2013) Ultrasound elastography: principles and techniques. Diagn Interv Imaging 94:487–495.  https://doi.org/10.1016/j.diii.2013.01.022 PubMedCrossRefGoogle Scholar
  20. 20.
    Babu AS, Wells ML, Teytelboym OM, et al. (2016) Elastography in chronic liver disease: modalities, techniques, limitations and future directions. Radiographics 36(7):1987–2006.  https://doi.org/10.1148/rg.2016160042 CrossRefGoogle Scholar
  21. 21.
    Castera L, Forns X, Alberti A (2008) Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 48:835–847.  https://doi.org/10.1016/j.jhep.2008.02.008 PubMedCrossRefGoogle Scholar
  22. 22.
    Sasso M, Beaugrand M, de Ledinghen V, et al. (2010) Controlled attenuation parameter (CAP): a novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 36(11):1825–1835.  https://doi.org/10.1016/j.ultrasmedbio.2010.07.005 PubMedCrossRefGoogle Scholar
  23. 23.
    Sandrin L, Fourquet B, Hasquenoph JM, et al. (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 12:1705–1713CrossRefGoogle Scholar
  24. 24.
    Bamber J, Cosgrove D, Dietrich C, et al. (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med 34:169–184.  https://doi.org/10.1055/s-0033-1335205 PubMedCrossRefGoogle Scholar
  25. 25.
    Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 4:396–409CrossRefGoogle Scholar
  26. 26.
    Ferraioli G, Tinelli C, Dal Bello B, et al. (2012) Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 56:2125–2133.  https://doi.org/10.1002/hep.25936 PubMedCrossRefGoogle Scholar
  27. 27.
    Fujimoto K, Kato M, Kudo M, et al. (2013) Novel image analysis method using ultrasound elastography for noninvasive evaluation of hepatic fibrosis in patients with chronic hepatitis C. Oncology 84:3–12.  https://doi.org/10.1159/000345883 PubMedCrossRefGoogle Scholar
  28. 28.
    Yada N, Kudo M, Morikawa H, et al. (2013) Assessment of liver fibrosis with real-time tissue elastography in chronic viral hepatitis. Oncology 84:13–20.  https://doi.org/10.1159/000345884 PubMedCrossRefGoogle Scholar
  29. 29.
    Koizumi Y, Hirooka M, Kisaka Y, et al. (2011) Liver fibrosis in patients with chronic hepatitis C: noninvasive diagnosis by means of real-time tissue elastography—establishment of the method for measurement. Radiology 2:610–617.  https://doi.org/10.1148/radiol.10100319 CrossRefGoogle Scholar
  30. 30.
    Onur MR, Poyraz AK, Ucak EE, et al. (2012) Semiquantitative strain elastography of liver masses. J Ultrasound Med 7:1061–1067CrossRefGoogle Scholar
  31. 31.
    Li Y, Huang YS, Wang ZZ, et al. (2016) Systematic review with meta-analysis: the diagnostic accuracy of transient elastography for the staging of liver fibrosis in patients with chronic hepatitis B. Aliment Pharmacol Ther 43:458–469.  https://doi.org/10.1111/apt.13488 PubMedCrossRefGoogle Scholar
  32. 32.
    Ying HY, Lu LG, Jing DD, Ni XS (2016) Accuracy of transient elastography in the assessment of chronic hepatitis C-related liver cirrhosis. Clin Invest Med 39(5):E150–E160PubMedCrossRefGoogle Scholar
  33. 33.
    Pavlov CS, Casazza G, Nikolova D, Tsochatzis E, Gluud C (2016) Systematic review with meta-analysis: diagnostic accuracy of transient elastography for staging of fibrosis in people with alcoholic liver disease. Aliment Pharmacol Ther 43:575–585.  https://doi.org/10.1111/apt.13524 PubMedCrossRefGoogle Scholar
  34. 34.
    Tsochatzis EA, Gurusamy KS, Ntaoula S, et al. (2011) Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol 54(4):650–659.  https://doi.org/10.1016/j.jhep.2010.07.033 PubMedCrossRefGoogle Scholar
  35. 35.
    Wong VW, Chan HL (2010) Transient elastography. J Gastroenterol Hepatol 11:1726–1731.  https://doi.org/10.1111/j.1440-1746.2010.06437.x CrossRefGoogle Scholar
  36. 36.
    Fraquelli M, Rigamonti C, Casazza G, et al. (2007) Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 56:968–973PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kiani A, Brun V, Lainé F, et al. (2016) Acoustic radiation force impulse imaging for assessing liver fibrosis in alcoholic liver disease. WJG 22(20):4926–4935.  https://doi.org/10.3748/wjg.v22.i20.4926 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tachi Y, Hirai T, Kojima Y, et al. (2016) Liver stiffness measurement using acoustic radiation force impulse elastography in hepatitis C virus-infected patients with a sustained virological response. Aliment Pharmacol Ther 44:346–355.  https://doi.org/10.1111/apt.13695 PubMedCrossRefGoogle Scholar
  39. 39.
    Cao W, Zhou Y, Niu Y, et al. (2017) Quantitative analysis of hepatic toxicity in rats induced by inhalable silica nanoparticles using acoustic radiation force imaging. J Ultrasound Med 36(9):1829–1839.  https://doi.org/10.1002/jum.14219 PubMedCrossRefGoogle Scholar
  40. 40.
    Bert F, Stahmeyer JT, Rossol S (2016) Ultrasound elastography used for preventive non-invasive screening in early detection of liver fibrosis. J Clin Med Res 8:650–655.  https://doi.org/10.14740/jocmr2625w PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hu X, Qiu L, Liu D, Qian L (2017) Acoustic radiation force impulse (ARFI) elastography for non-invasive evaluation of hepatic fibrosis in chronic hepatitis B and C patients: a systematic review and meta-analysis. Med Ultrason 19:23–31.  https://doi.org/10.11152/mu-942 PubMedCrossRefGoogle Scholar
  42. 42.
    Cabassa P, Ravanelli M, Rossini A, et al. (2015) Acoustic radiation force impulse quantification of spleen elasticity for assessing liver fibrosis. Abdom Imaging 4:738–744.  https://doi.org/10.1007/s00261-014-0306-7 CrossRefGoogle Scholar
  43. 43.
    Jaffer OS, Lung PFC, Bosanac D, et al. (2012) Acoustic radiation force impulse quantification: repeatability of measurements in selected liver segments and influence of age, body mass index and liver capsule-to-box distance. BJR 85:e858–e863.  https://doi.org/10.1259/bjr/74797353 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Balakrishnan M, Souza F, Muñoz C, et al. (2016) Liver and spleen stiffness measurements by point shear wave elastography via acoustic radiation force impulse. J Ultrasound Med 35:2373–2380PubMedCrossRefGoogle Scholar
  45. 45.
    Dhyani M, Gee MS, Misdraji J, et al. (2015) Feasibility study for assessing liver fibrosis in paediatric and adolescent patients using real-time shear wave elastography. J Med Imaging Radiat Oncol 59(6):687–694.  https://doi.org/10.1111/1754-9485.12388 PubMedCrossRefGoogle Scholar
  46. 46.
    Zheng J, Guo H, Zeng J, et al. (2015) Two-dimensional shear-wave elastography and conventional US: the optimal evaluation of liver fibrosis and cirrhosis. Radiology 275:290–300.  https://doi.org/10.1148/radiol.14140828 PubMedCrossRefGoogle Scholar
  47. 47.
    Dhyani M, Grajo JR, Bhan AK, et al. (2017) Validation of shear wave elastography cutoff values on the supersonic aixplorer for practical clinical use in liver fibrosis staging. Ultrasound Med Biol 43:1125–1133.  https://doi.org/10.1016/j.ultrasmedbio.2017.01.022 PubMedCrossRefGoogle Scholar
  48. 48.
    Woo H, Lee JY, Yoon JH, et al. (2015) Comparison of the reliability of acoustic radiation force impulse imaging and supersonic shear imaging in measurement of liver stiffness. Radiology 277:881–886.  https://doi.org/10.1148/radiol.2015141975 PubMedCrossRefGoogle Scholar
  49. 49.
    Menzilcioglu MS, Duymus M, Citil S, et al. (2015) Strain wave elastography for evaluation of renal parenchyma in chronic kidney disease. BJR 88:20140714–20140716.  https://doi.org/10.1259/bjr.20140714 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Orlacchio A, Chegai F, Del Giudice C, et al. (2014) Kidney transplant: usefulness of real-time elastography (RTE) in the diagnosis of graft interstitial fibrosis. Ultrasound Med Biol 11:2564–2572.  https://doi.org/10.1016/j.ultrasmedbio.2014.06.002 CrossRefGoogle Scholar
  51. 51.
    Cui G, Yang Z, Zhang W, et al. (2014) Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis. Exp Ther Med 7(1):233–235PubMedCrossRefGoogle Scholar
  52. 52.
    Yu N, Zhang Y, Xu Y (2014) Value of virtual touch tissue quantification in stages of diabetic kidney disease. J Ultrasound Med 33(5):787–792.  https://doi.org/10.7863/ultra.33.5.787 PubMedCrossRefGoogle Scholar
  53. 53.
    Bob F, Bota S, Sporea I, et al. (2014) Kidney shear wave speed values in subjects with and without renal pathology and inter-operator reproducibility of acoustic radiation force impulse elastography (ARFI): preliminary results. PLoS ONE 9(11):e113761PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bota S, Bob F, Sporea I, Şirli R, Popescu A (2015) Factors that influence kidney shear wave speed assessed by acoustic radiation force impulse elastography in patients without kidney pathology. Ultrasound Med Biol 41(1):1–6PubMedCrossRefGoogle Scholar
  55. 55.
    Wang L (2016) Applications of acoustic radiation force impulse quantification in chronic kidney disease: a review. Ultrasonography 35(4):302–308PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hassan K, Loberant N, Abbas N, et al. (2016) Shear wave elastography imaging for assessing the chronic pathologic changes in advanced diabetic kidney disease. Ther Clin Risk Manag 12:1615–1622PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Barr RG, Nakashima K, Amy D, et al. (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast. Ultrasound Med Biol 41(5):1148–1160.  https://doi.org/10.1016/j.ultrasmedbio.2015.03.008 PubMedCrossRefGoogle Scholar
  58. 58.
    Gong X, Xu Q, Xu Z, et al. (2011) Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 1:11–18.  https://doi.org/10.1007/s10549-011-1745-2 CrossRefGoogle Scholar
  59. 59.
    Grajo JR, Barr RG (2014) Strain elastography for prediction of breast cancer tumor grades. J Ultrasound Med 33(1):129–134.  https://doi.org/10.7863/ultra.33.1.129 PubMedCrossRefGoogle Scholar
  60. 60.
    Zhi H, Xiao XY, Ou B, et al. (2012) Could ultrasonic elastography help the diagnosis of small (≤ 2 cm) breast cancer with the usage of sonographic BI-RADS classification? Eur J Radiol 81(11):3216–3221.  https://doi.org/10.1016/j.ejrad.2012.04.016 PubMedCrossRefGoogle Scholar
  61. 61.
    Cosgrove D, Piscaglia F, Bamber J, et al. (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med 34:238–253.  https://doi.org/10.1055/s-0033-1335375 PubMedCrossRefGoogle Scholar
  62. 62.
    Li DD, Guo LH, Xu HX, et al. (2015) Acoustic radiation force impulse elastography for differentiation of malignant and benign breast lesions: a meta-analysis. Int J Clin Exp Med 8(4):4753–4761PubMedPubMedCentralGoogle Scholar
  63. 63.
    Li G, Li DW, Fang YX, et al. (2013) Performance of shear wave elastography for differentiation of benign and malignant solid breast masses. PLoS ONE.  https://doi.org/10.1371/journal.pone.0076322 Google Scholar
  64. 64.
    Liu B, Zheng Y, Huang G, et al. (2016) Breast lesions: quantitative diagnosis using ultrasound shear wave elastography-a systematic review and meta-analysis. Ultrasound Med Biol 42:835–847.  https://doi.org/10.1016/j.ultrasmedbio.2015.10.024 PubMedCrossRefGoogle Scholar
  65. 65.
    Woo S, Kim SY, Cho JY, Kim SH (2014) Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol 3:346–355CrossRefGoogle Scholar
  66. 66.
    Brock M, von Bodman C, Palisaar RJ, et al. (2012) The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol 187:2039–2043.  https://doi.org/10.1016/j.juro.2012.01.063 PubMedCrossRefGoogle Scholar
  67. 67.
    Walz J, Marcy M, Pianna JT, et al. (2011) Identification of the prostate cancer index lesion by real-time elastography: considerations for focal therapy of prostate cancer. World J Urol 29:589–594.  https://doi.org/10.1007/s00345-011-0688-x PubMedCrossRefGoogle Scholar
  68. 68.
    Zheng X, Ji P, Mao H, Hu J (2012) A comparison of virtual touch tissue quantification and digital rectal examination for discrimination between prostate cancer and benign prostatic hyperplasia. Radiol Oncol 46(1):69–74.  https://doi.org/10.2478/v10019-011-0026-3 PubMedCrossRefGoogle Scholar
  69. 69.
    Rouvière O, Melodelima C, Dinh AH, et al. (2017) Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur Radiol 27(5):1858–1866.  https://doi.org/10.1007/s00330-016-4534-9 PubMedCrossRefGoogle Scholar
  70. 70.
    Correas JM, Tissier AM, Khairoune A, et al. (2015) Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology 275:280–289.  https://doi.org/10.1148/radiol.14140567 PubMedCrossRefGoogle Scholar
  71. 71.
    Woo S, Kim SY, Lee MS, Cho JY, Kim SH (2015) Shear wave elastography assessment in the prostate: an intraobserver reproducibility study. Clin Imaging 39(3):484–487.  https://doi.org/10.1016/j.clinimag.2014.11.013 PubMedCrossRefGoogle Scholar
  72. 72.
    Sang L, Wang XM, Xu DY, Cai YF (2017) Accuracy of shear wave elastography for the diagnosis of prostate cancer: a meta-analysis. Sci Rep.  https://doi.org/10.1038/s41598-017-02187-0 Google Scholar
  73. 73.
    Woo S, Suh CH, Kim SY, Cho JY, Kim SH (2017) Shear-wave elastography for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Am J Roentgenol 4:806–814.  https://doi.org/10.2214/AJR.17.18056 CrossRefGoogle Scholar
  74. 74.
    Zhang M, Fu S, Zhang Y, Tang J, Zhou Y (2013) Elastic modulus of the prostate: a new non-invasive feature to diagnose bladder outlet obstruction in patients with benign prostatic hyperplasia. Ultrasound Med Biol 40(7):1408–1413.  https://doi.org/10.1016/j.ultrasmedbio.2013.10.012 CrossRefGoogle Scholar
  75. 75.
    Dighe M, Bae U, Richardson ML, et al. (2008) Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology 248:662–669.  https://doi.org/10.1148/radiol.2482071758 PubMedCrossRefGoogle Scholar
  76. 76.
    Bojunga J, Herrmann E, Meyer G, et al. (2010) Real-time elastography for the differentiation of benign and malignant thyroid nodules: a meta-analysis. Thyroid 2010(20):1145–1150.  https://doi.org/10.1089/thy.2010.0079 CrossRefGoogle Scholar
  77. 77.
    Moon HJ, Sung JM, Kim EK, et al. (2012) Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology 262:1002–1013.  https://doi.org/10.1148/radiol.11110839 PubMedCrossRefGoogle Scholar
  78. 78.
    Azizi G, Keller J, Lewis M, et al. (2013) Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thyroid 23:734–740.  https://doi.org/10.1089/thy.2012.0227 PubMedCrossRefGoogle Scholar
  79. 79.
    Zhan J, Jin JM, Diao XH, Chen Y (2015) Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules: a meta-analysis. Eur J Radiol 84(11):2181–2186.  https://doi.org/10.1016/j.ejrad.2015.07.015 PubMedCrossRefGoogle Scholar
  80. 80.
    Sporea I, Sirli R, Bota S, et al. (2012) ARFI elastography for the evaluation of diffuse thyroid gland pathology: preliminary results. World J Radiol 4(4):174–178.  https://doi.org/10.4329/wjr.v4.i4.174 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Liu B, Liang J, Zheng Y, et al. (2015) Two-dimensional shear wave elastography as promising diagnostic tool for predicting malignant thyroid nodules: a prospective single-centre experience. Eur Radiol 25:624–634.  https://doi.org/10.1007/s00330-014-3455-8 PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang F, Zhao X, Han R, et al. (2017) Comparison of acoustic radiation force impulse imaging and strain elastography in differentiating malignant from benign thyroid nodules. J Ultrasound Med.  https://doi.org/10.1002/jum.14302 Google Scholar
  83. 83.
    Deng J, Zhou P, Tian SM, et al. (2014) Comparison of diagnostic efficacy of contrast-enhanced ultrasound, acoustic radiation force impulse imaging, and their combined use in differentiating focal solid thyroid nodules. PLoS ONE 3:e90674.  https://doi.org/10.1371/journal.pone.0090674 CrossRefGoogle Scholar
  84. 84.
    Kawada N, Tanaka S (2016) Elastography for the pancreas: current status and future perspective. World J Gastroenterol 22(14):3712–3724.  https://doi.org/10.3748/wjg.v22.i14.3712 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rustemović N, Kalauz M, Grubelić Ravić K, et al. (2017) Differentiation of pancreatic masses via endoscopic ultrasound strain ratio elastography using adjacent pancreatic tissue as the reference. Pancreas 3:347–351.  https://doi.org/10.1097/MPA.0000000000000758 CrossRefGoogle Scholar
  86. 86.
    Kim SY, Cho JH, Kim YJ, et al. (2017) Diagnostic efficacy of quantitative endoscopic ultrasound elastography for differentiating pancreatic disease. J Gastroenterol Hepatol 5:1115–1122.  https://doi.org/10.1111/jgh.13649 CrossRefGoogle Scholar
  87. 87.
    Iglesias-Garcia J, Domínguez-Muñoz JE, Castiñeira-Alvariño M, Luaces-Regueira M, Lariño-Noia J (2013) Quantitative elastography associated with endoscopic ultrasound for the diagnosis of chronic pancreatitis. Endoscopy 10:781–788.  https://doi.org/10.1055/s-0033-1344614 Google Scholar
  88. 88.
    Park MK, Jo J, Kwon H, et al. (2014) Usefulness of acoustic radiation force impulse elastography in the differential diagnosis of benign and malignant solid pancreatic lesions. Ultrasonography 33:26–33.  https://doi.org/10.14366/usg.13017 PubMedCrossRefGoogle Scholar
  89. 89.
    D’Onofrio M, De Robertis R, Crosara S, et al. (2016) Acoustic radiation force impulse with shear wave speed quantification of pancreatic masses: a prospective study. Pancreatology 16:106–109.  https://doi.org/10.1016/j.pan.2015.12.003 PubMedCrossRefGoogle Scholar
  90. 90.
    Pozzi R, Parzanese I, Baccarin A, et al. (2017) Point shear-wave elastography in chronic pancreatitis: a promising tool for staging disease severity. Pancreatology 17:905–910PubMedCrossRefGoogle Scholar
  91. 91.
    Mateen MA, Muheet KA, Mohan RJ, et al. (2012) Evaluation of ultrasound based acoustic radiation force impulse (ARFI) and eSie touch sonoelastography for diagnosis of inflammatory pancreatic diseases. JOP 13(1):36–44PubMedGoogle Scholar
  92. 92.
    Ferraioli G, Filice C, Castera L, et al. (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol 5:1161–1179.  https://doi.org/10.1016/j.ultrasmedbio.2015.03.007 CrossRefGoogle Scholar
  93. 93.
    Takuma Y, Nouso K, Morimoto Y, et al. (2016) Portal hypertension in patients with liver cirrhosis: diagnostic accuracy of spleen stiffness. Radiology 279(2):609–619.  https://doi.org/10.1148/radiol.2015150690 PubMedCrossRefGoogle Scholar
  94. 94.
    Takuma Y, Nouso K, Morimoto Y, et al. (2013) Measurement of spleen stiffness by acoustic radiation force impulse imaging identifies cirrhotic patients with esophageal varices. Gastroenterology 1:92–101.  https://doi.org/10.1053/j.gastro.2012.09.049 CrossRefGoogle Scholar
  95. 95.
    Grgurevic I, Bokun T, Mustapic S, et al. (2015) Real-time two-dimensional shear wave ultrasound elastography of the liver is a reliable predictor of clinical outcomes and the presence of esophageal varices in patients with compensated liver cirrhosis. Croat Med J. 56:470–481.  https://doi.org/10.3325/cmj.2015.56.470 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kim TY, Kim TY, Kim Y, et al. (2016) Diagnostic performance of shear wave elastography for predicting esophageal varices in patients with compensated liver cirrhosis. J Ultrasound Med 35:1373–1381PubMedCrossRefGoogle Scholar
  97. 97.
    Elkrief L, Rautou PE, Ronot M, et al. (2015) Prospective comparison of spleen and liver stiffness by using shear-wave and transient elastography for detection of portal hypertension in cirrhosis. Radiology 275(2):589–598.  https://doi.org/10.1148/radiol.14141210 PubMedCrossRefGoogle Scholar
  98. 98.
    Kim HG, Park MS, Lee JD, Park SY (2017) Ultrasound elastography of the neonatal brain: preliminary study. J Ultrasound Med 36(7):1313–1319.  https://doi.org/10.7863/ultra.16.06079 PubMedCrossRefGoogle Scholar
  99. 99.
    Shiina T (2013) JSUM ultrasound elastography practice guidelines: basics and terminology. J Med Ultrason 40(4):309–323.  https://doi.org/10.1007/s10396-013-0490-z CrossRefGoogle Scholar
  100. 100.
    Barr Richard G (2017) Principles of elastography. In: Barr RG (ed) Elastography: a practical approach, 1st edn. New York: Thieme, pp 6–24Google Scholar
  101. 101.
    Arena U, Vizzutti F, Corti G, et al. (2008) Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 47:380–384PubMedCrossRefGoogle Scholar
  102. 102.
    Stevenson M, Lloyd-Jones M, Morgan MY, Wong R (2012) Non-invasive diagnostic assessment tools for the detection of liver fibrosis in patients with suspected alcohol-related liver disease: a systematic review and economic evaluation. Health Technol Assess 16:1–194.  https://doi.org/10.3310/hta16040 PubMedCentralCrossRefGoogle Scholar
  103. 103.
    de Ledinghen V, Vergniol J, Foucher J, et al. (2010) Feasibility of liver transient elastography with FibroScan® using a new probe for obese patients. Liver Int 30:1043–1048.  https://doi.org/10.1111/j.1478-3231.2010.02258.x PubMedCrossRefGoogle Scholar
  104. 104.
    Barr RG, Zhang Z (2012) Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment. J Ultrasound Med 31(6):895–902PubMedCrossRefGoogle Scholar
  105. 105.
    Hong Y, Liu X, Li Z, et al. (2009) Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J Ultrasound Med 28:861–867PubMedCrossRefGoogle Scholar
  106. 106.
    Early H, Aguilera J, Cheang E, McGahan J (2017) Challenges and considerations when using shear wave elastography to evaluate the transplanted kidney, with pictorial review. J Ultrasound Med 36(9):1771–1782.  https://doi.org/10.1002/jum.14217 PubMedCrossRefGoogle Scholar
  107. 107.
    Popescu A, Bota S, Sporea I, et al. (2013) The influence of food intake on liver stiffness values assessed by acoustic radiation force impulse elastography-preliminary results. Ultrasound Med Biol 39:579–584.  https://doi.org/10.1016/j.ultrasmedbio.2012.11.013 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arinc Ozturk
    • 1
  • Joseph R. Grajo
    • 2
  • Manish Dhyani
    • 1
  • Brian W. Anthony
    • 3
  • Anthony E. Samir
    • 1
  1. 1.Center for Ultrasound Research & Translation, Department of RadiologyMassachusetts General HospitalBostonUSA
  2. 2.Department of Radiology, Division of Abdominal ImagingUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Device Realization and Computational Instrumentation Laboratory, Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations