Advertisement

Combination transarterial chemoembolization and microwave ablation improves local tumor control for 3- to 5-cm hepatocellular carcinoma when compared with transarterial chemoembolization alone

  • Amanda R. Smolock
  • Mircea M. Cristescu
  • Audrey Hinshaw
  • Kaitlin M. Woo
  • Shane A. Wells
  • Timothy J. Ziemlewicz
  • Meghan G. Lubner
  • Prasad S. Dalvie
  • J. Louis Hinshaw
  • Christopher L. Brace
  • Orhan S. Ozkan
  • Fred T. LeeJr.
  • Paul Laeseke
Article
  • 125 Downloads

Abstract

Purpose

To compare transarterial chemoembolization (TACE) monotherapy to combination TACE and microwave ablation (MWA) for local control of 3- to 5-cm hepatocellular carcinoma (HCC).

Methods

Patients with HCC between 3 and 5 cm treated with TACE monotherapy or combination TACE + MWA at a single institution between 2007 and 2016 were retrospectively reviewed. Twenty-four HCCs (median diameter 3.8 cm) in 16 patients (13 males; median age 64 years) were treated using TACE monotherapy. Combination TACE + MWA was used to treat 23 HCCs (median diameter 4.2 cm) in 22 patients (18 males; median age 61 years). Microwave ablation was performed at a target time of two weeks following TACE. Individual tumors were followed by serial contrast-enhanced CT or MR. Response to treatment was evaluated on a tumor-by-tumor basis using mRECIST criteria with the primary outcome being local tumor progression (LTP). Data were analyzed using Fisher’s exact test for categorical variables and Wilcoxon rank sum test for continuous variables. Time to LTP was estimated with the Kaplan–Meier method.

Results

Relative to TACE monotherapy, TACE + MWA provided a trend toward both a lower rate of LTP (34.8% vs. 62.5%, p = 0.11) and a higher complete response rate (65.2% vs. 37.5%; p = 0.12). Time to LTP (22.3 months vs. 4.2 months; p = 0.001) was significantly longer in the TACE + MWA group compared to TACE monotherapy.

Conclusions

Combination therapy with TACE and microwave ablation improves local control and increases time to LTP for 3–5 cm HCC.

Notes

Compliance with ethical standards

Funding

No funding was provided for this study.

Conflict of interest

Christopher L. Brace: (1) consulting fees, NeuWave Medical, Inc., Madison, WI (2) shareholder and consulting fees, Symple Surgical, Inc., Menlo Park, CA. J. Louis Hinshaw: Consulting fees, NeuWave Medical, Inc., Madison, WI. Paul Laeseke: consulting fees, NeuWave Medical, Inc., Madison, WI. Fred T. Lee, Jr: (1) Board Member, Stockholder, and Grant recipient (pending) Histosonics, Inc., Ann Arbor, MI (2) Paid consultant, Ethicon, Inc., Somerville, NJ (3) Stockholder, Elucent, Inc., Minneapolis, MN (4) Patent holder and Royalties, Medtronic/Covidien, Inc., Boulder, CO (5) Stockholder, Zurex, Inc., HealthMyne, Inc., and Eximis Surgical, Inc. Meghan G. Lubner: (1) Grant recipient, Ethicon, Inc., Somerville, NJ (2) Grant recipient, Philips, Amsterdam, Netherlands. Shane A. Wells: consulting fees, NeuWave Medical, Inc., Madison, WI. Timothy J. Ziemlewicz: consulting fees, NeuWave Medical, Inc., Madison, WI.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study prior to undergoing procedures. This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived.

References

  1. 1.
    Ferlay J, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013)Google Scholar
  2. 2.
    Rahimi RS, Trotter JF (2015) Liver transplantation for hepatocellular carcinoma: outcomes and treatment options for recurrence. Ann Gastroenterol 28(3):323–330PubMedPubMedCentralGoogle Scholar
  3. 3.
    Maddala YK, Stadheim L, Andrews JC, et al. (2004) Drop-out rates of patients with hepatocellular cancer listed for liver transplantation: outcome with chemoembolization. Liver Transpl 10(3):449–455.  https://doi.org/10.1002/lt.20099 CrossRefPubMedGoogle Scholar
  4. 4.
    Mazzaferro V, Battiston C, Perrone S, et al. (2004) Radiofrequency ablation of small hepatocellular carcinoma in cirrhotic patients awaiting liver transplantation: a prospective study. Ann Surg 240(5):900–909.  https://doi.org/10.1097/00054725-200411000-00024 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Millonig G, Graziadei IW, Freund MC, et al. (2007) Response to preoperative chemoembolization correlates with outcome after liver transplantation in patients with hepatocellular carcinoma. Liver Transpl 13(2):272–279.  https://doi.org/10.1002/lt.21033 CrossRefPubMedGoogle Scholar
  6. 6.
    Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022.  https://doi.org/10.1002/hep.24199 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kothary N, Takehana C, Mueller K, et al. (2015) Watershed hepatocellular carcinomas: the risk of incomplete response following transhepatic arterial chemoembolization. J Vasc Interv Radiol 26(8):1122–1129.  https://doi.org/10.1016/j.jvir.2015.04.030 CrossRefPubMedGoogle Scholar
  8. 8.
    Ni JY, Liu SS, Xu LF, Sun HL, Chen YT (2013) Meta-analysis of radiofrequency ablation in combination with transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol 19(24):3872–3882.  https://doi.org/10.3748/wjg.v19.i24.3872 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Peng ZW, Zhang YJ, Chen MS, et al. (2013) Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J Clin Oncol 31(4):426–432.  https://doi.org/10.1200/JCO.2012.42.9936 CrossRefPubMedGoogle Scholar
  10. 10.
    Brace CL (2009) Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 38(3):135–143.  https://doi.org/10.1067/j.cpradiol.2007.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang WZ, Jiang N, Huang N, et al. (2009) Combined therapy with transcatheter arterial chemoembolization and percutaneous microwave coagulation for small hepatocellular carcinoma. World J Gastroenterol 15(6):748–752CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Seki T, Tamai T, Nakagawa T, et al. (2000) Combination therapy with transcatheter arterial chemoembolization and percutaneous microwave coagulation therapy for hepatocellular carcinoma. Cancer 89(6):1245–1251. 10.1002/1097-0142(20000915)89:6<1245::aid-cncr8>3.0.co;2-fCrossRefPubMedGoogle Scholar
  13. 13.
    Li W, Man W, Guo H, Yang P (2016) Clinical study of transcatheter arterial chemoembolization combined with microwave ablation in the treatment of advanced hepatocellular carcinoma. J Cancer Res Ther 12(Supplement):C217–C220.  https://doi.org/10.4103/0973-1482.200598 PubMedGoogle Scholar
  14. 14.
    Ginsburg M, Zivin SP, Wroblewski K, et al. (2015) Comparison of combination therapies in the management of hepatocellular carcinoma: transarterial chemoembolization with radiofrequency ablation versus microwave ablation. J Vasc Interv Radiol 26(3):330–341.  https://doi.org/10.1016/j.jvir.2014.10.047 CrossRefPubMedGoogle Scholar
  15. 15.
    Sacks D, McClenny TE, Cardella JF, Lewis CA (2003) Society of interventional radiology clinical practice guidelines. J Vasc Interv Radiol 14(9 Pt 2):S199–S202CrossRefPubMedGoogle Scholar
  16. 16.
    Ahmed M (2014) Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update: supplement to the consensus document. J Vasc Interv Radiol 25(11):1706–1708.  https://doi.org/10.1016/j.jvir.2014.09.005 CrossRefPubMedGoogle Scholar
  17. 17.
    Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30(1):52–60CrossRefPubMedGoogle Scholar
  18. 18.
    Chinn SB, Lee FT, Kennedy GD, et al. (2001) Effect of vascular occlusion on radiofrequency ablation of the liver. Am J Roentgenol 176(3):789–795.  https://doi.org/10.2214/ajr.176.3.1760789 CrossRefGoogle Scholar
  19. 19.
    Goldberg SN, Kamel IR, Kruskal JB, et al. (2002) Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am J Roentgenol 179(1):93–101.  https://doi.org/10.2214/ajr.179.1.1790093 CrossRefGoogle Scholar
  20. 20.
    Goldberg SN, Saldinger PF, Gazelle GS, et al. (2001) Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intratumoral doxorubicin injection in a rat breast tumor model. Radiology 220(2):420–427.  https://doi.org/10.1148/radiology.220.2.r01au44420 CrossRefPubMedGoogle Scholar
  21. 21.
    Mostafa EM, Ganguli S, Faintuch S, Mertyna P, Goldberg SN (2008) Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2 hepatic tumors. J Vasc Interv Radiol 19(12):1740–1748.  https://doi.org/10.1016/j.jvir.2008.08.028 CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Z, Gao F, Yang G, et al. (2014) Combination of radiofrequency ablation with transarterial chemoembolization for hepatocellular carcinoma: an up-to-date meta-analysis. Tumor Biol 35(8):7407–7413.  https://doi.org/10.1007/s13277-014-1976-z CrossRefGoogle Scholar
  23. 23.
    Brace CL (2010) Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng 38(1):65–78CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brace CL, Laeseke PF, Sampson LA, et al. (2007) Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology 244(1):151–156.  https://doi.org/10.1148/radiol.2441052054 CrossRefPubMedGoogle Scholar
  25. 25.
    Xu LF, Sun HL, Chen YT, et al. (2013) Large primary hepatocellular carcinoma: transarterial chemoembolization monotherapy versus combined transarterial chemoembolization-percutaneous microwave coagulation therapy. J Gastroenterol Hepatol 28(3):456–463.  https://doi.org/10.1111/jgh.12088 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amanda R. Smolock
    • 1
  • Mircea M. Cristescu
    • 1
  • Audrey Hinshaw
    • 1
  • Kaitlin M. Woo
    • 4
  • Shane A. Wells
    • 1
  • Timothy J. Ziemlewicz
    • 1
  • Meghan G. Lubner
    • 1
  • Prasad S. Dalvie
    • 1
  • J. Louis Hinshaw
    • 1
  • Christopher L. Brace
    • 1
    • 2
    • 3
  • Orhan S. Ozkan
    • 1
  • Fred T. LeeJr.
    • 1
    • 2
  • Paul Laeseke
    • 1
  1. 1.Departments of RadiologyUniversity of Wisconsin Hospital and ClinicsMadisonUSA
  2. 2.Departments of Biomedical EngineeringUniversity of Wisconsin Hospital and ClinicsMadisonUSA
  3. 3.Departments of Medical PhysicsUniversity of Wisconsin Hospital and ClinicsMadisonUSA
  4. 4.Departments of Biostatistics and Medical InformaticsUniversity of Wisconsin Hospital and ClinicsMadisonUSA

Personalised recommendations