Advertisement

Abdominal Radiology

, Volume 43, Issue 4, pp 819–847 | Cite as

Contrast-enhanced ultrasound of malignant liver lesions

  • Isabelle Durot
  • Stephanie R. Wilson
  • Jürgen K. Willmann
Article

Abstract

Contrast-enhanced ultrasound (CEUS) is a safe, relatively inexpensive, and widely available imaging technique using dedicated imaging ultrasound sequences and FDA-approved contrast microbubbles that allow detection and characterization of malignant focal liver lesions with high diagnostic accuracy. CEUS provides dynamic real-time imaging with high spatial and temporal capability, allowing for unique contributions to the already established protocols for diagnosing focal liver lesions using CT and MR imaging. In patients with lesions indeterminate on CT and MRI, CEUS is a helpful problem-solving complementary tool that improves patient management. Furthermore, CEUS assists guidance of liver biopsies and local treatment. Variations of CEUS such as DCE-US and ultrasound molecular imaging are emerging for quantitative monitoring of treatment effects and possible earlier detection of cancer. In this review, basic principles of CEUS techniques and ultrasound contrast agents along with a description of the enhancement patterns of malignant liver lesions are summarized. Also, a discussion of the role of CEUS for treatment guidance and monitoring, intraoperative CEUS, and an outlook on emerging applications is provided.

Keywords

Ultrasound Contrast-enhanced Microbubbles Liver Malignant liver lesions Dynamic contrast-enhanced ultrasound (DCE-US) Molecular imaging 

Abbreviations

CEUS

Contrast-enhanced ultrasound

CT

Computed tomography

MRI

Magnetic resonance imaging

DCE-US

Dynamic contrast-enhanced ultrasound

UCA

Ultrasound contrast agent

FDA

Food and Drug Administration

CECT

Contrast-enhanced computed tomography

CEMRI

Contrast-enhanced magnetic resonance imaging

MI

Mechanical index

OPTN

Organ Procurement and Transplant Network

LI-RADS

Liver Imaging Reporting and Data System

ACR

American College of Radiology

FLL

Focal liver lesion

HCC

Hepatocellular carcinoma

ICC

Intrahepatic cholangiocarcinoma

FNH

Focal nodular hyperplasia

AS

Angiosarcoma

HEHE

Hepatic epithelioid hemangioendothelioma

AASLD

American Association for the Study of Liver Disease

CASL

Canadian Association for the Study of the Liver

JSH

Japan Society of Hepatology

APASL

Asian Pacific Association for the Study of the Liver

AISF

Italian Association for the Study of Liver

RN

Regenerative nodule

DN

Dysplastic nodule

TACE

Transarterial chemoembolization

RFA

Radiofrequency ablation

RECIST

Response Evaluation Criteria in Solid Tumors

2D

Two-dimensional

3D

Three-dimensional

EASL

European Association for the Study of the Liver

EORTC

European Organization for Research and Treatment of Cancer

IO-US

Intraoperative ultrasound

IO-CEUS

Intraoperative contrast-enhanced ultrasound

Notes

Acknowledgements

Images are from the University of Calgary and Stanford University using the contrast agent Definity (Lantheus Medical Imaging, Billeria MA). Isabelle Durot was supported by the Swiss Society of Radiology.

Compliance with ethical standards

Funding

This paper was supported in parts by NIH R01CA209888 grant.

Conflict of interest

Isabelle Durot declares that she has no conflict of interest. Stephanie R. Wilson received research support from Siemens and Philips and has an advisory function for Lantheus. Jürgen K. Willmann received a research grant from Siemens, GE, Philips, and Bracco; is a consultant for Bracco and Triple Ring Technologies; and is a member of the Scientific Advisory board for Lantheus, Bracco, and SonoVol.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

261_2017_1360_MOESM1_ESM.mov (13 mb)
Online Resource 1 Liver metastasis from breast cancer. 61-yo female with history of breast cancer and newly diagnosed liver lesion on CT. CEUS shows rapid and homogenous enhancement in the early arterial phase, followed by a rapid and pronounced washout still within the arterial phase with a punched-out appearance. This is a non-hepatocellular malignancy, classic for a metastasis (MOV 13346 kb)
261_2017_1360_MOESM2_ESM.mov (5.2 mb)
Online Resource 2 Intrahepatic cholangiocarcinoma. 47-yo female with a history of abdominal pain for 2 months. Following intravenous administration of contrast, there is peripheral arterial hyperenhancement with marked washout seen within 1 min (see Online Resource 3). Histology showed an intrahepatic cholangiocarcinoma (MOV 5284 kb)
261_2017_1360_MOESM3_ESM.mov (4.2 mb)
Online Resource 3 Intrahepatic cholangiocarcinoma. The portal venous sweep (same patient as Online Resource 2) shows the marked washout of the mass and increases conspicuity of the multiple additional lesions present, not well seen initially. In addition, the patent hepatic veins can be seen coursing through the large mass. Histology showed an intrahepatic cholangiocarcinoma (MOV 4343 kb)
261_2017_1360_MOESM4_ESM.mov (4.1 mb)
Online Resource 4 Hepatocellular carcinoma within a dysplastic nodule. 47-yo male with HCV liver cirrhosis. CEUS in the arterial phase shows a hyperenhancing focus within a hypoenhancing nodule. The diagnosis of HCC within a dysplastic nodule was made with the classic nodule-in-nodule pattern (MOV 4180 kb)
261_2017_1360_MOESM5_ESM.mp4 (17.9 mb)
Online Resource 5 Mosaic pattern hepatocellular carcinoma in a cirrhotic liver. 72-yo male with chronic HCV liver cirrhosis. Following intravenous administration of contrast, there is non-homogeneous rapid and strong enhancement in the early arterial phase and progressive, slightly more homogeneous enhancement in the portal venous phase followed by slow and weak washout of different tumor areas (“mosaic architecture”) (MP4 18340 kb)
261_2017_1360_MOESM6_ESM.mov (7.7 mb)
Online Resource 6 Tumor thrombus (tumor in vein). 56-yo male with HCV and ethanol liver cirrhosis. CEUS shows the main portal vein and its branches with hyperenhancement in the arterial phase at approximately 13 s with subsequent slow washout (not shown), consistent with tumor thrombus (tumor in vein). Hepatic tumor is not shown (MOV 7894 kb)

References

  1. 1.
    Wilson SR, Greenbaum LD, Goldberg BB (2009) Contrast-enhanced ultrasound: what is the evidence and what are the obstacles? AJR Am J Roentgenol 193(1):55–60. doi: 10.2214/AJR.09.2553 PubMedCrossRefGoogle Scholar
  2. 2.
    Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3(5):356–366PubMedCrossRefGoogle Scholar
  3. 3.
    Paefgen V, Doleschel D, Kiessling F (2015) Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 6:197. doi: 10.3389/fphar.2015.00197 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Grayburn PA, Weiss JL, Hack TC, et al. (1998) Phase III multicenter trial comparing the efficacy of 2% dodecafluoropentane emulsion (EchoGen) and sonicated 5% human albumin (Albunex) as ultrasound contrast agents in patients with suboptimal echocardiograms. J Am Coll Cardiol 32(1):230–236PubMedCrossRefGoogle Scholar
  5. 5.
    Claudon M, Dietrich CF, Choi BI, et al. (2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall Med 34(1):11–29. doi: 10.1055/s-0032-1325499 PubMedGoogle Scholar
  6. 6.
    American College of Radiology (2016) Liver imaging reporting and data system. https://www.acr.org/Quality-Safety/Resources/LIRADS
  7. 7.
    Song ZZ, Zhang YM (2015) Contrast-enhanced ultrasound imaging of the vasa vasorum of carotid artery plaque. World J Radiol 7(6):131–133. doi: 10.4329/wjr.v7.i6.131 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    D’Onofrio M, Crosara S, De Robertis R, et al. (2014) Malignant focal liver lesions at contrast-enhanced ultrasonography and magnetic resonance with hepatospecific contrast agent. Ultrasound 22(2):91–98. doi: 10.1177/1742271X13513888 PubMedCrossRefGoogle Scholar
  9. 9.
    Bartolotta TV, Vernuccio F, Taibbi A, Lagalla R (2016) Contrast-enhanced ultrasound in focal liver lesions: where do we stand? Semin Ultrasound CT MR 37(6):573–586. doi: 10.1053/j.sult.2016.10.003 PubMedCrossRefGoogle Scholar
  10. 10.
    Feinstein SB, Cheirif J, Ten Cate FJ, et al. (1990) Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J Am Coll Cardiol 16(2):316–324PubMedCrossRefGoogle Scholar
  11. 11.
    Appis AW, Tracy MJ, Feinstein SB (2015) Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res Pract 2(2):R55–R62. doi: 10.1530/ERP-15-0018 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Schneider M (1999) Characteristics of SonoVuetrade mark. Echocardiography 16(7, Pt 2):743–746PubMedCrossRefGoogle Scholar
  14. 14.
    Platts DG, Fraser JF (2011) Contrast echocardiography in critical care: echoes of the future? A review of the role of microsphere contrast echocardiography. Crit Care Resusc 13(1):44–55PubMedGoogle Scholar
  15. 15.
    Jakobsen JA, Oyen R, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital R (2005) Safety of ultrasound contrast agents. Eur Radiol 15(5):941–945. doi: 10.1007/s00330-004-2601-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Piscaglia F, Bolondi L, Italian Society for Ultrasound in M, Biology Study Group on Ultrasound Contrast A (2006) The safety of SonoVue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32(9):1369–1375. doi: 10.1016/j.ultrasmedbio.2006.05.031 PubMedCrossRefGoogle Scholar
  17. 17.
    Khawaja OA, Shaikh KA, Al-Mallah MH (2010) Meta-analysis of adverse cardiovascular events associated with echocardiographic contrast agents. Am J Cardiol 106(5):742–747. doi: 10.1016/j.amjcard.2010.04.034 PubMedCrossRefGoogle Scholar
  18. 18.
    Sawhney S, Wilson SR (2017) Can ultrasound with contrast enhancement replace nonenhanced computed tomography scans in patients with contraindication to computed tomography contrast agents? Ultrasound Q 33(2):125–132. doi: 10.1097/RUQ.0000000000000271 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
  20. 20.
    Postema M, Gilja OH (2011) Contrast-enhanced and targeted ultrasound. World J Gastroenterol 17(1):28–41. doi: 10.3748/wjg.v17.i1.28 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    American Institute of Ultrasound in Medicine (2000) Section 7—Discussion of the mechanical index and other exposure parameters. J Ultrasound Med 19(2):143–148, 154–168Google Scholar
  22. 22.
    Simpson DH, Chin CT, Burns PN (1999) Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 46(2):372–382. doi: 10.1109/58.753026 PubMedCrossRefGoogle Scholar
  23. 23.
    Greis C (2014) Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks. Clin Hemorheol Microcirc 58(1):89–95. doi: 10.3233/CH-141873 PubMedGoogle Scholar
  24. 24.
    Federal Drug Administration (2016) Office of clinical pharmacology reviewGoogle Scholar
  25. 25.
    Cantisani V, Wilson SR (2015) CEUS: where are we in 2015? Eur J Radiol 84(9):1621–1622. doi: 10.1016/j.ejrad.2015.05.028 PubMedCrossRefGoogle Scholar
  26. 26.
    Molins IG, Font JM, Alvaro JC, et al. (2010) Contrast-enhanced ultrasound in diagnosis and characterization of focal hepatic lesions. World J Radiol 2(12):455–462. doi: 10.4329/wjr.v2.i12.455 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bo XW, Xu HX, Wang D, et al. (2016) Fusion imaging of contrast-enhanced ultrasound and contrast-enhanced CT or MRI before radiofrequency ablation for liver cancers. Br J Radiol 89(1067):20160379. doi: 10.1259/bjr.20160379 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Shi W, He Y, Ding W, et al. (2016) Contrast-enhanced ultrasonography used for post-treatment responses evaluation of radiofrequency ablations for hepatocellular carcinoma: a meta-analysis. Br J Radiol 89(1064):20150973. doi: 10.1259/bjr.20150973 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dietrich CF, Averkiou MA, Correas JM, et al. (2012) An EFSUMB introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall Med 33(4):344–351. doi: 10.1055/s-0032-1313026 PubMedCrossRefGoogle Scholar
  30. 30.
    Piscaglia F, Nolsoe C, Dietrich CF, et al. (2012) The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33(1):33–59. doi: 10.1055/s-0031-1281676 PubMedCrossRefGoogle Scholar
  31. 31.
    Nolsoe CP, Lorentzen T (2016) International guidelines for contrast-enhanced ultrasonography: ultrasound imaging in the new millennium. Ultrasonography 35(2):89–103. doi: 10.14366/usg.15057 PubMedCrossRefGoogle Scholar
  32. 32.
    Ishigami K, Yoshimitsu K, Nishihara Y, et al. (2009) Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images: correlation with histopathologic findings. Radiology 250(2):435–443. doi: 10.1148/radiol.2501071702 PubMedCrossRefGoogle Scholar
  33. 33.
    Jo PC, Jang HJ, Burns PN, et al. (2017) Integration of contrast-enhanced US into a multimodality approach to imaging of nodules in a cirrhotic liver: how I do it. Radiology 282(2):317–331. doi: 10.1148/radiol.2016151732 PubMedCrossRefGoogle Scholar
  34. 34.
    Kono Y, Lyshchik A, Cosgrove D, et al. (2017) Contrast Enhanced Ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS(R)): the official version by the American College of Radiology (ACR). Ultraschall Med 38(1):85–86. doi: 10.1055/s-0042-124369 PubMedCrossRefGoogle Scholar
  35. 35.
    Piscaglia F, Wilson SR, Lyshchik A, et al. (2017) American College of Radiology Contrast Enhanced Ultrasound Liver Imaging Reporting and Data System (CEUS LI-RADS) for the diagnosis of Hepatocellular Carcinoma: a pictorial essay. Ultraschall Med . doi: 10.1055/s-0042-124661 Google Scholar
  36. 36.
    The American College of Radiology Liver Imaging Reporting and Data System. https://www.acr.org/Quality-Safety/Resources/LIRADS
  37. 37.
    Elsayes KM, Kielar AZ, Agrons MM, et al. (2017) Liver Imaging Reporting and Data System: an expert consensus statement. J Hepatocell Carcinoma 4:29–39. doi: 10.2147/JHC.S125396 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nicolau C, Vilana R, Catala V, et al. (2006) Importance of evaluating all vascular phases on contrast-enhanced sonography in the differentiation of benign from malignant focal liver lesions. AJR Am J Roentgenol 186(1):158–167. doi: 10.2214/AJR.04.1009 PubMedCrossRefGoogle Scholar
  39. 39.
    D’Onofrio M, Rozzanigo U, Masinielli BM, et al. (2005) Hypoechoic focal liver lesions: characterization with contrast enhanced ultrasonography. J Clin Ultrasound 33(4):164–172. doi: 10.1002/jcu.20111 PubMedCrossRefGoogle Scholar
  40. 40.
    Quaia E, Bartolotta TV, Midiri M, et al. (2006) Analysis of different contrast enhancement patterns after microbubble-based contrast agent injection in liver hemangiomas with atypical appearance on baseline scan. Abdom Imaging 31(1):59–64. doi: 10.1007/s00261-005-0358-9 PubMedCrossRefGoogle Scholar
  41. 41.
    Bartolotta TV, Midiri M, Quaia E, et al. (2005) Liver haemangiomas undetermined at grey-scale ultrasound: contrast-enhancement patterns with SonoVue and pulse-inversion US. Eur Radiol 15(4):685–693. doi: 10.1007/s00330-004-2569-9 PubMedCrossRefGoogle Scholar
  42. 42.
    Malhi H, Grant EG, Duddalwar V (2014) Contrast-enhanced ultrasound of the liver and kidney. Radiol Clin North Am 52(6):1177–1190. doi: 10.1016/j.rcl.2014.07.005 PubMedCrossRefGoogle Scholar
  43. 43.
    Namasivayam S, Martin DR, Saini S (2007) Imaging of liver metastases: MRI. Cancer Imaging 7:2–9. doi: 10.1102/1470-7330.2007.0002 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ananthakrishnan A, Gogineni V, Saeian K (2006) Epidemiology of primary and secondary liver cancers. Semin Intervent Radiol 23(1):47–63. doi: 10.1055/s-2006-939841 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sahani DV, Bajwa MA, Andrabi Y, Bajpai S, Cusack JC (2014) Current status of imaging and emerging techniques to evaluate liver metastases from colorectal carcinoma. Ann Surg 259(5):861–872. doi: 10.1097/SLA.0000000000000525 PubMedCrossRefGoogle Scholar
  46. 46.
    Larsen LP, Rosenkilde M, Christensen H, et al. (2007) The value of contrast enhanced ultrasonography in detection of liver metastases from colorectal cancer: a prospective double-blinded study. Eur J Radiol 62(2):302–307. doi: 10.1016/j.ejrad.2006.11.033 PubMedCrossRefGoogle Scholar
  47. 47.
    Dong Y, Zhang XL, Mao F, et al. (2017) Contrast-enhanced ultrasound features of histologically proven small (≤ 20 mm) liver metastases. Scand J Gastroenterol 52(1):23–28. doi: 10.1080/00365521.2016.1224380 PubMedCrossRefGoogle Scholar
  48. 48.
    Strobel D, Seitz K, Blank W, et al. (2009) Tumor-specific vascularization pattern of liver metastasis, hepatocellular carcinoma, hemangioma and focal nodular hyperplasia in the differential diagnosis of 1,349 liver lesions in contrast-enhanced ultrasound (CEUS). Ultraschall Med 30(4):376–382. doi: 10.1055/s-0028-1109672 PubMedCrossRefGoogle Scholar
  49. 49.
    Kong WT, Ji ZB, Wang WP, et al. (2016) Evaluation of liver metastases using contrast-enhanced ultrasound: enhancement patterns and influencing factors. Gut Liver 10(2):283–287. doi: 10.5009/gnl14324 PubMedCrossRefGoogle Scholar
  50. 50.
    Danila M, Popescu A, Sirli R, et al. (2010) Contrast enhanced ultrasound (CEUS) in the evaluation of liver metastases. Med Ultrason 12(3):233–237PubMedGoogle Scholar
  51. 51.
    Gaddikeri S, McNeeley MF, Wang CL, et al. (2014) Hepatocellular carcinoma in the noncirrhotic liver. AJR Am J Roentgenol 203(1):W34–W47. doi: 10.2214/AJR.13.11511 PubMedCrossRefGoogle Scholar
  52. 52.
    de Sio I, Iadevaia MD, Vitale LM, et al. (2014) Optimized contrast-enhanced ultrasonography for characterization of focal liver lesions in cirrhosis: a single-center retrospective study. United Eur Gastroenterol J 2(4):279–287. doi: 10.1177/2050640614538964 CrossRefGoogle Scholar
  53. 53.
    Xu HX, Chen LD, Liu LN, et al. (2012) Contrast-enhanced ultrasound of intrahepatic cholangiocarcinoma: correlation with pathological examination. Br J Radiol 85(1016):1029–1037. doi: 10.1259/bjr/21653786 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chung YE, Kim MJ, Park YN, et al. (2009) Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics 29(3):683–700. doi: 10.1148/rg.293085729 PubMedCrossRefGoogle Scholar
  55. 55.
    Lee J, Kim SH, Kang TW, et al. (2016) Mass-forming intrahepatic cholangiocarcinoma: diffusion-weighted imaging as a preoperative prognostic marker. Radiology 281(1):119–128. doi: 10.1148/radiol.2016151781 PubMedCrossRefGoogle Scholar
  56. 56.
    Uno M, Shimada K, Yamamoto Y, et al. (2012) Periductal infiltrating type of intrahepatic cholangiocarcinoma: a rare macroscopic type without any apparent mass. Surg Today 42(12):1189–1194. doi: 10.1007/s00595-012-0145-5 PubMedCrossRefGoogle Scholar
  57. 57.
    Liver Cancer Study Group of Japan (1989) The general rules for the clinical and pathological study of primary liver cancer. Jpn J Surg 19(1):98–129CrossRefGoogle Scholar
  58. 58.
    Tsukahara T, Shimoyama Y, Ebata T, et al. (2016) Cholangiocarcinoma with intraductal tubular growth pattern versus intraductal papillary growth pattern. Mod Pathol 29(3):293–301. doi: 10.1038/modpathol.2015.152 PubMedCrossRefGoogle Scholar
  59. 59.
    Takanami K, Yamada T, Tsuda M, et al. (2011) Intraductal papillary mucinous neoplasm of the bile ducts: multimodality assessment with pathologic correlation. Abdom Imaging 36(4):447–456. doi: 10.1007/s00261-010-9649-x PubMedCrossRefGoogle Scholar
  60. 60.
    Yeh TS, Tseng JH, Chen TC, et al. (2005) Characterization of intrahepatic cholangiocarcinoma of the intraductal growth-type and its precursor lesions. Hepatology 42(3):657–664. doi: 10.1002/hep.20837 PubMedCrossRefGoogle Scholar
  61. 61.
    Sohn WJ, Jo S (2009) A huge intraductal papillary mucinous carcinoma of the bile duct treated by right trisectionectomy with caudate lobectomy. World J Surg Oncol 7:93. doi: 10.1186/1477-7819-7-93 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lu Q, Xue LY, Wang WP, Huang BJ, Li CX (2015) Dynamic enhancement pattern of intrahepatic cholangiocarcinoma on contrast-enhanced ultrasound: the correlation with cirrhosis and tumor size. Abdom Imaging 40(6):1558–1566. doi: 10.1007/s00261-015-0379-y PubMedCrossRefGoogle Scholar
  63. 63.
    Saeed O, Saxena R (2017) Primary mesenchymal liver tumors of childhood. Semin Diagn Pathol 34(2):201–207. doi: 10.1053/j.semdp.2016.12.016 PubMedCrossRefGoogle Scholar
  64. 64.
    Kim KA, Kim KW, Park SH, et al. (2006) Unusual mesenchymal liver tumors in adults: radiologic-pathologic correlation. AJR Am J Roentgenol 187(5):W481–W489. doi: 10.2214/AJR.05.0659 PubMedCrossRefGoogle Scholar
  65. 65.
    Schweitzer N, Soudah B, Gebel M, Manns MP, Boozari B (2015) Gray scale and contrast-enhanced ultrasound imaging of malignant liver tumors of vascular origin. United Eur Gastroenterol J 3(1):63–71. doi: 10.1177/2050640614560604 CrossRefGoogle Scholar
  66. 66.
    Alomari AI (2006) The lollipop sign: a new cross-sectional sign of hepatic epithelioid hemangioendothelioma. Eur J Radiol 59(3):460–464. doi: 10.1016/j.ejrad.2006.03.022 PubMedCrossRefGoogle Scholar
  67. 67.
    Dong Y, Wang WP, Cantisani V, et al. (2016) Contrast-enhanced ultrasound of histologically proven hepatic epithelioid hemangioendothelioma. World J Gastroenterol 22(19):4741–4749. doi: 10.3748/wjg.v22.i19.4741 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Koyama T, Fletcher JG, Johnson CD, et al. (2002) Primary hepatic angiosarcoma: findings at CT and MR imaging. Radiology 222(3):667–673. doi: 10.1148/radiol.2223010877 PubMedCrossRefGoogle Scholar
  69. 69.
    Trojan J, Hammerstingl R, Engels K, et al. (2010) Contrast-enhanced ultrasound in the diagnosis of malignant mesenchymal liver tumors. J Clin Ultrasound 38(5):227–231. doi: 10.1002/jcu.20690 PubMedGoogle Scholar
  70. 70.
    Wang L, Lv K, Chang XY, et al. (2012) Contrast-enhanced ultrasound study of primary hepatic angiosarcoma: a pitfall of non-enhancement. Eur J Radiol 81(9):2054–2059. doi: 10.1016/j.ejrad.2011.06.026 PubMedCrossRefGoogle Scholar
  71. 71.
    Azzam RI, Alshak NS, Pham HP (2012) AIRP best cases in radiologic-pathologic correlation: hepatic epithelioid hemangioendothelioma. Radiographics 32(3):789–794. doi: 10.1148/rg.323115010 PubMedCrossRefGoogle Scholar
  72. 72.
    Jang HJ, Kim TK, Wilson SR (2006) Imaging of malignant liver masses: characterization and detection. Ultrasound Q 22(1):19–29PubMedGoogle Scholar
  73. 73.
    Deng Y, Zhou Y, Cheng N (2014) Laparoscopic liver biopsy in the diagnosis of hepatic epithelioid hemangioendothelioma: a case report. Oncol Lett 8(3):1317–1319. doi: 10.3892/ol.2014.2308 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mandry D, Bressenot A, Galloy MA, et al. (2007) Contrast-enhanced ultrasound in fibro-lamellar hepatocellular carcinoma: a case report. Ultraschall Med 28(6):547–552. doi: 10.1055/s-2007-1012500 PubMedCrossRefGoogle Scholar
  75. 75.
    Fan ZH, Chen MH, Dai Y, et al. (2006) Evaluation of primary malignancies of the liver using contrast-enhanced sonography: correlation with pathology. AJR Am J Roentgenol 186(6):1512–1519. doi: 10.2214/AJR.05.0943 PubMedCrossRefGoogle Scholar
  76. 76.
    Ganeshan D, Szklaruk J, Kundra V, et al. (2014) Imaging features of fibrolamellar hepatocellular carcinoma. AJR Am J Roentgenol 202(3):544–552. doi: 10.2214/AJR.13.11117 PubMedCrossRefGoogle Scholar
  77. 77.
    Lantinga MA, Gevers TJ, Drenth JP (2013) Evaluation of hepatic cystic lesions. World J Gastroenterol 19(23):3543–3554. doi: 10.3748/wjg.v19.i23.3543 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ren XL, Yan RL, Yu XH, et al. (2010) Biliary cystadenocarcinoma diagnosed with real-time contrast-enhanced ultrasonography: report of a case with diagnostic features. World J Gastroenterol 16(1):131–135PubMedPubMedCentralGoogle Scholar
  79. 79.
    Tomasian A, Sandrasegaran K, Elsayes KM, et al. (2015) Hematologic malignancies of the liver: spectrum of disease. Radiographics 35(1):71–86. doi: 10.1148/rg.351130008 PubMedCrossRefGoogle Scholar
  80. 80.
    Myoteri D, Dellaportas D, Arkoumani E, Marinis A, Zizi-Sermpetzoglou A (2014) Primary hepatic lymphoma: a challenging diagnosis. Case Rep Oncol Med 2014:212598. doi: 10.1155/2014/212598 PubMedPubMedCentralGoogle Scholar
  81. 81.
    Yang XW, Tan WF, Yu WL, et al. (2010) Diagnosis and surgical treatment of primary hepatic lymphoma. World J Gastroenterol 16(47):6016–6019PubMedPubMedCentralGoogle Scholar
  82. 82.
    Foschi FG, Dall’Aglio AC, Marano G, et al. (2010) Role of contrast-enhanced ultrasonography in primary hepatic lymphoma. J Ultrasound Med 29(9):1353–1356PubMedCrossRefGoogle Scholar
  83. 83.
    Zentar A, Tarchouli M, Elkaoui H, et al. (2014) Primary hepatic lymphoma. J Gastrointest Cancer 45(3):380–382. doi: 10.1007/s12029-013-9505-7 PubMedCrossRefGoogle Scholar
  84. 84.
    von Herbay A, Vogt C, Willers R, Haussinger D (2004) Real-time imaging with the sonographic contrast agent SonoVue: differentiation between benign and malignant hepatic lesions. J Ultrasound Med 23(12):1557–1568CrossRefGoogle Scholar
  85. 85.
    Yu SJ (2016) A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010–2016. Clin Mol Hepatol 22(1):7–17. doi: 10.3350/cmh.2016.22.1.7 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Burak KW, Sherman M (2015) Hepatocellular carcinoma: consensus, controversies and future directions. A report from the Canadian Association for the Study of the Liver Hepatocellular Carcinoma Meeting. Can J Gastroenterol Hepatol 29(4):178–184PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kudo M, Matsui O, Izumi N, et al. (2014) JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the Liver Cancer Study Group of Japan. Liver Cancer 3(3–4):458–468. doi: 10.1159/000343875 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bruix J, Sherman M, American Association for the Study of Liver Diseases (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022. doi: 10.1002/hep.24199 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sato T, Kondo F, Ebara M, et al. (2015) Natural history of large regenerative nodules and dysplastic nodules in liver cirrhosis: 28-year follow-up study. Hepatol Int 9(2):330–336. doi: 10.1007/s12072-015-9620-6 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    An C, Choi YA, Choi D, et al. (2015) Growth rate of early-stage hepatocellular carcinoma in patients with chronic liver disease. Clin Mol Hepatol 21(3):279–286. doi: 10.3350/cmh.2015.21.3.279 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cadier B, Bulsei J, Nahon P, et al. (2017) Early detection and curative treatment of hepatocellular carcinoma: a cost-effectiveness analysis in France and in the United States. Hepatology 65(4):1237–1248. doi: 10.1002/hep.28961 PubMedCrossRefGoogle Scholar
  92. 92.
    Gaiani S, Celli N, Piscaglia F, et al. (2004) Usefulness of contrast-enhanced perfusional sonography in the assessment of hepatocellular carcinoma hypervascular at spiral computed tomography. J Hepatol 41(3):421–426. doi: 10.1016/j.jhep.2004.04.022 PubMedCrossRefGoogle Scholar
  93. 93.
    Zheng SG, Xu HX, Liu LN (2014) Management of hepatocellular carcinoma: the role of contrast-enhanced ultrasound. World J Radiol 6(1):7–14. doi: 10.4329/wjr.v6.i1.7 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Giorgio A, Calisti G, di Sarno A, et al. (2011) Characterization of dysplastic nodules, early hepatocellular carcinoma and progressed hepatocellular carcinoma in cirrhosis with contrast-enhanced ultrasound. Anticancer Res 31(11):3977–3982PubMedGoogle Scholar
  95. 95.
    Xu HX, Xie XY, Lu MD, et al. (2008) Contrast-enhanced sonography in the diagnosis of small hepatocellular carcinoma ≤ 2 cm. J Clin Ultrasound 36(5):257–266. doi: 10.1002/jcu.20433 PubMedCrossRefGoogle Scholar
  96. 96.
    Jang HJ, Kim TK, Burns PN, Wilson SR (2007) Enhancement patterns of hepatocellular carcinoma at contrast-enhanced US: comparison with histologic differentiation. Radiology 244(3):898–906. doi: 10.1148/radiol.2443061520 PubMedCrossRefGoogle Scholar
  97. 97.
    Chen MH, Dai Y, Yan K, et al. (2006) The role of contrast-enhanced ultrasound on the diagnosis of small hepatocellular carcinoma (≤ 3 cm) in patients with cirrhosis. Hepatol Res 35(4):281–288. doi: 10.1016/j.hepres.2006.04.013 PubMedCrossRefGoogle Scholar
  98. 98.
    Choi JY, Lee JM, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology 273(1):30–50. doi: 10.1148/radiol.14132362 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hanna RF, Miloushev VZ, Tang A, et al. (2016) Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting hepatocellular carcinoma. Abdom Radiol (NY) 41(1):71–90. doi: 10.1007/s00261-015-0592-8 CrossRefGoogle Scholar
  100. 100.
    Willmann JK, Bonomo L, Carla Testa A, et al. (2017) Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol . doi: 10.1200/JCO.2016.70.8594 PubMedPubMedCentralGoogle Scholar
  101. 101.
    Zhang H, Ingham ES, Gagnon MK, et al. (2017) In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles. Biomaterials 118:63–73. doi: 10.1016/j.biomaterials.2016.11.026 PubMedCrossRefGoogle Scholar
  102. 102.
    Abou-Elkacem L, Wilson KE, Johnson SM, et al. (2016) Ultrasound molecular imaging of the breast cancer neovasculature using engineered fibronectin scaffold ligands: a novel class of targeted contrast ultrasound agent. Theranostics 6(11):1740–1752. doi: 10.7150/thno.15169 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wang H, Lutz AM, Hristov D, Tian L, Willmann JK (2017) Intra-animal comparison between three-dimensional molecularly targeted US and three-dimensional dynamic contrast-enhanced US for early antiangiogenic treatment assessment in colon cancer. Radiology 282(2):443–452. doi: 10.1148/radiol.2016160032 PubMedCrossRefGoogle Scholar
  104. 104.
    Zhou J, Wang H, Zhang H, et al. (2016) VEGFR2-targeted three-dimensional ultrasound imaging can predict responses to antiangiogenic therapy in preclinical models of colon cancer. Cancer Res 76(14):4081–4089. doi: 10.1158/0008-5472.CAN-15-3271 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Abou-Elkacem L, Bachawal SV, Willmann JK (2015) Ultrasound molecular imaging: moving toward clinical translation. Eur J Radiol 84(9):1685–1693. doi: 10.1016/j.ejrad.2015.03.016 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Grouls C, Hatting M, Rix A, et al. (2013) Liver dysplasia: US molecular imaging with targeted contrast agent enables early assessment. Radiology 267(2):487–495. doi: 10.1148/radiol.13120220 PubMedCrossRefGoogle Scholar
  107. 107.
    Smeenge M, Tranquart F, Mannaerts CK, et al. (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol . doi: 10.1097/RLI.0000000000000362 PubMedGoogle Scholar
  108. 108.
    Vilana R, Forner A, Bianchi L, et al. (2010) Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast-enhanced ultrasound. Hepatology 51(6):2020–2029. doi: 10.1002/hep.23600 PubMedCrossRefGoogle Scholar
  109. 109.
    Mazzaferro V, Bhoori S, Sposito C, et al. (2011) Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl 17(Suppl 2):S44–S57. doi: 10.1002/lt.22365 PubMedCrossRefGoogle Scholar
  110. 110.
    Sapisochin G, Fernandez de Sevilla E, Echeverri J, Charco R (2015) Liver transplantation for cholangiocarcinoma: current status and new insights. World J Hepatol 7(22):2396–2403. doi: 10.4254/wjh.v7.i22.2396 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kim SA, Lee JM, Lee KB, et al. (2011) Intrahepatic mass-forming cholangiocarcinomas: enhancement patterns at multiphasic CT, with special emphasis on arterial enhancement pattern–correlation with clinicopathologic findings. Radiology 260(1):148–157. doi: 10.1148/radiol.11101777 PubMedCrossRefGoogle Scholar
  112. 112.
    Galassi M, Iavarone M, Rossi S, et al. (2013) Patterns of appearance and risk of misdiagnosis of intrahepatic cholangiocarcinoma in cirrhosis at contrast enhanced ultrasound. Liver Int 33(5):771–779. doi: 10.1111/liv.12124 PubMedCrossRefGoogle Scholar
  113. 113.
    Li R, Zhang X, Ma KS, et al. (2013) Dynamic enhancing vascular pattern of intrahepatic peripheral cholangiocarcinoma on contrast-enhanced ultrasound: the influence of chronic hepatitis and cirrhosis. Abdom Imaging 38(1):112–119. doi: 10.1007/s00261-012-9854-x PubMedCrossRefGoogle Scholar
  114. 114.
    Li R, Yuan MX, Ma KS, et al. (2014) Detailed analysis of temporal features on contrast enhanced ultrasound may help differentiate intrahepatic cholangiocarcinoma from hepatocellular carcinoma in cirrhosis. PLoS ONE 9(5):e98612. doi: 10.1371/journal.pone.0098612 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Han J, Liu Y, Han F, et al. (2015) The degree of contrast washout on contrast-enhanced ultrasound in distinguishing intrahepatic cholangiocarcinoma from hepatocellular carcinoma. Ultrasound Med Biol 41(12):3088–3095. doi: 10.1016/j.ultrasmedbio.2015.08.001 PubMedCrossRefGoogle Scholar
  116. 116.
    Kinjo N, Kawanaka H, Akahoshi T, et al. (2014) Portal vein thrombosis in liver cirrhosis. World J Hepatol 6(2):64–71. doi: 10.4254/wjh.v6.i2.64 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sacerdoti D, Serianni G, Gaiani S, et al. (2007) Thrombosis of the portal venous system. J Ultrasound 10(1):12–21. doi: 10.1016/j.jus.2007.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Quirk M, Kim YH, Saab S, Lee EW (2015) Management of hepatocellular carcinoma with portal vein thrombosis. World J Gastroenterol 21(12):3462–3471. doi: 10.3748/wjg.v21.i12.3462 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Chawla YK, Bodh V (2015) Portal vein thrombosis. J Clin Exp Hepatol 5(1):22–40. doi: 10.1016/j.jceh.2014.12.008 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Catalano OA, Choy G, Zhu A, Hahn PF, Sahani DV (2010) Differentiation of malignant thrombus from bland thrombus of the portal vein in patients with hepatocellular carcinoma: application of diffusion-weighted MR imaging. Radiology 254(1):154–162. doi: 10.1148/radiol.09090304 PubMedCrossRefGoogle Scholar
  121. 121.
    Wang Y, Yuan L, Ge RL, Sun Y, Wei G (2013) Survival benefit of surgical treatment for hepatocellular carcinoma with inferior vena cava/right atrium tumor thrombus: results of a retrospective cohort study. Ann Surg Oncol 20(3):914–922. doi: 10.1245/s10434-012-2646-2 PubMedCrossRefGoogle Scholar
  122. 122.
    Kokudo T, Hasegawa K, Yamamoto S, et al. (2014) Surgical treatment of hepatocellular carcinoma associated with hepatic vein tumor thrombosis. J Hepatol 61(3):583–588. doi: 10.1016/j.jhep.2014.04.032 PubMedCrossRefGoogle Scholar
  123. 123.
    Kim TK, Khalili K, Jang HJ (2015) Local ablation therapy with contrast-enhanced ultrasonography for hepatocellular carcinoma: a practical review. Ultrasonography 34(4):235–245. doi: 10.14366/usg.15018 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Roccarina D, Garcovich M, Ainora ME, et al. (2015) Usefulness of contrast enhanced ultrasound in monitoring therapeutic response after hepatocellular carcinoma treatment. World J Hepatol 7(14):1866–1874. doi: 10.4254/wjh.v7.i14.1866 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Lassau N, Brule A, Chami L, et al. (2008) Evaluation of early response to antiangiogenic treatment with dynamic contrast enhanced ultrasound. J Radiol 89(5 Pt 1):549–555PubMedCrossRefGoogle Scholar
  126. 126.
    Wang H, Hristov D, Qin J, Tian L, Willmann JK (2015) Three-dimensional dynamic contrast-enhanced US imaging for early antiangiogenic treatment assessment in a mouse colon cancer model. Radiology 277(2):424–434. doi: 10.1148/radiol.2015142824 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lassau N, Koscielny S, Chami L, et al. (2011) Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification—preliminary results. Radiology 258(1):291–300. doi: 10.1148/radiol.10091870 PubMedCrossRefGoogle Scholar
  128. 128.
    Lassau N, Koscielny S, Albiges L, et al. (2010) Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res 16(4):1216–1225. doi: 10.1158/1078-0432.CCR-09-2175 PubMedCrossRefGoogle Scholar
  129. 129.
    Williams R, Hudson JM, Lloyd BA, et al. (2011) Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology 260(2):581–590. doi: 10.1148/radiol.11101893 PubMedCrossRefGoogle Scholar
  130. 130.
    Wang H, Kaneko OF, Tian L, Hristov D, Willmann JK (2015) Three-dimensional ultrasound molecular imaging of angiogenesis in colon cancer using a clinical matrix array ultrasound transducer. Invest Radiol 50(5):322–329. doi: 10.1097/RLI.0000000000000128 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zhou J, Zhang H, Wang H, et al. (2017) Early prediction of tumor response to bevacizumab treatment in murine colon cancer models using three-dimensional dynamic contrast-enhanced ultrasound imaging. Angiogenesis . doi: 10.1007/s10456-017-9566-5 PubMedGoogle Scholar
  132. 132.
    Sparchez Z, Radu P, Zaharia T, et al. (2011) Usefulness of contrast enhanced ultrasound guidance in percutaneous biopsies of liver tumors. J Gastrointest Liver Dis 20(2):191–196Google Scholar
  133. 133.
    Wu W, Chen MH, Yan K, et al. (2006) Application of contrast-enhanced ultrasound to increase the diagnostic rate of liver tumor by biopsy. Zhonghua Yi Xue Za Zhi 86(2):116–120PubMedGoogle Scholar
  134. 134.
    Fioole B, de Haas RJ, Wicherts DA, et al. (2008) Additional value of contrast enhanced intraoperative ultrasound for colorectal liver metastases. Eur J Radiol 67(1):169–176. doi: 10.1016/j.ejrad.2007.03.017 PubMedCrossRefGoogle Scholar
  135. 135.
    Nakano H, Ishida Y, Hatakeyama T, et al. (2008) Contrast-enhanced intraoperative ultrasonography equipped with late Kupffer-phase image obtained by sonazoid in patients with colorectal liver metastases. World J Gastroenterol 14(20):3207–3211PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Torzilli G, Del Fabbro D, Palmisano A et al. (2005) Contrast-enhanced intraoperative ultrasonography during hepatectomies for colorectal cancer liver metastases. J Gastrointest Surg 9(8):1148–1153; discussion 1153–1144. doi: 10.1016/j.gassur.2005.08.016
  137. 137.
    Torzilli G, Del Fabbro D, Palmisano A, Donadon M, Montorsi M (2007) Contrast-enhanced intraoperative ultrasonography: a valuable and not any more monocentric diagnostic technique performed in different ways. Ann Surg 245(1):152–153; author reply 152–153. doi: 10.1097/01.sla.0000250940.21627.57
  138. 138.
    Lu Q, Luo Y, Yuan CX, et al. (2008) Value of contrast-enhanced intraoperative ultrasound for cirrhotic patients with hepatocellular carcinoma: a report of 20 cases. World J Gastroenterol 14(25):4005–4010PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Leen E, Ceccotti P, Moug SJ, et al. (2006) Potential value of contrast-enhanced intraoperative ultrasonography during partial hepatectomy for metastases: an essential investigation before resection? Ann Surg 243(2):236–240. doi: 10.1097/01.sla.0000197708.77063.07 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Loss M, Schneider J, Uller W, et al. (2012) Intraoperative high resolution linear contrast enhanced ultrasound (IOUS) for detection of microvascularization of malignant liver lesions before surgery or radiofrequency ablation. Clin Hemorheol Microcirc 50(1–2):65–77. doi: 10.3233/CH-2011-1444 PubMedGoogle Scholar
  141. 141.
    Shah AJ, Callaway M, Thomas MG, Finch-Jones MD (2010) Contrast-enhanced intraoperative ultrasound improves detection of liver metastases during surgery for primary colorectal cancer. HPB (Oxford) 12(3):181–187. doi: 10.1111/j.1477-2574.2009.00141.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Radiology, School of MedicineStanford UniversityStanfordUSA
  2. 2.Department of RadiologyUniversity of CalgaryCalgaryCanada
  3. 3.Department of Radiology, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations