Abdominal Radiology

, Volume 43, Issue 5, pp 1223–1230 | Cite as

Fat poor angiomyolipoma differentiation from renal cell carcinoma at 320-slice dynamic volume CT perfusion

  • Chao Chen
  • Qinqin Kang
  • Bing Xu
  • Zhang Shi
  • Hairuo Guo
  • Qiang Wei
  • Yayun Lu
  • Xinhuai Wu



To compare various CT perfusion features of fat poor angiomyolipoma (AML) with those of size-matched renal cell carcinoma (RCC).


One hundred and seventy-four patients [16 with fat poor AML (mean diameter, 3.1 cm; range, 1.5–5.5 cm) and 158 with RCC (mean diameter, 3.2 cm; range, 2.4–5.4 cm)] who had undergone 320-slice dynamic volume CT perfusion were evaluated. Equivalent blood volume (BV Equiv), permeability surface-area product (PS), and blood flow (BF) of tumor were measured and analyzed. Fat poor AML was compared with each subtype of RCC (132 clear cell, 9 papillary, and 17 chromophobe). Receiver operating characteristic (ROC) curve analysis was performed for the comparison of fat poor AML and RCC. ROC curve analysis was not performed for the papillary RCC subtype because of the small number of masses of this subtype.


BV Equiv and BF were significantly lower in fat poor AML than in clear cell RCC (P < 0.05 for both). Fat poor AML had higher BV Equiv, PS, and BF than papillary RCC (P < 0.05 for all). PS and BF in fat poor AML significantly exceeded those in chromophobe RCC (P < 0.05 for both). For differentiating fat poor AML from clear cell RCC, area under the ROC curve (AUC) of BV Equiv and BF were 0.82 and 0.69. Using the optimal threshold value, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 0.82, 0.81, 0.35, 0.97 for BV Equiv and 0.71, 0.75, 0.24, 0.96 for BF, respectively. For differentiating fat poor AML from chromophobe RCC, AUC of PS and BF were 0.77 and 0.79, respectively. The optimal sensitivity, specificity, PPV, and NPV were 0.77, 0.75, 0.75, 0.76 for PS and 0.71, 0.81, 0.72, 0.80 for BF, respectively.


Fat poor AML and subtypes of RCCs demonstrate different perfusion features at 320-slice dynamic volume CT, allowing their differentiations with BV Equiv, PS, and BF being valuable perfusion parameters.


Computed tomography Perfusion imaging Renal cell carcinoma Fat poor angiomyolipoma 


Compliance with ethical standards


No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.


  1. 1.
    Fittschen A, Wendlik I, Oeztuerk S, et al. (2014) Prevalence of sporadic renal angiomyolipoma: a retrospective analysis of 61,389 in- and out-patients. Abdom Imaging 39(5):1009–1013. doi: 10.1007/s00261-014-0129-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Hafron J, Fogarty JD, Hoenig DM, et al. (2005) Imaging characteristics of minimal fat renal angiomyolipoma with histologic correlations. Urology 66(6):1155–1159. doi: 10.1016/j.urology.2005.06.119 CrossRefPubMedGoogle Scholar
  3. 3.
    Chaudhry HS, Davenport MS, Nieman CM, et al. (2012) Histogram analysis of small solid renal masses: differentiating minimal fat angiomyolipoma from renal cell carcinoma. AJR Am J Roentgenol 198(2):377–383. doi: 10.2214/AJR.11.6887 CrossRefPubMedGoogle Scholar
  4. 4.
    Lane BR, Aydin H, Danforth TL, et al. (2008) Clinical correlates of renal angiomyolipoma subtypes in 209 patients: classic, fat poor, tuberous sclerosis associated and epithelioid. J Urol 180(3):836–843. doi: 10.1016/j.juro.2008.05.041 CrossRefPubMedGoogle Scholar
  5. 5.
    Simpfendorfer C, Herts BR, Motta-Ramirez GA, et al. (2009) Angiomyolipoma with minimal fat on MDCT: can counts of negative-attenuation pixels aid diagnosis? AJR Am J Roentgenol 192(2):438–443. doi: 10.2214/AJR.08.1180 CrossRefPubMedGoogle Scholar
  6. 6.
    Jeong CJ, Park BK, Park JJ, et al. (2016) Unenhanced CT and MRI parameters that can be used to reliably predict fat-invisible angiomyolipoma. AJR Am J Roentgenol 206(2):340–347. doi: 10.2214/AJR.15.15086 CrossRefPubMedGoogle Scholar
  7. 7.
    Potretzke AM, Potretzke TA, Bauman TM, et al. (2017) Computed tomography and magnetic resonance findings of fat-poor angiomyolipomas. J Endourol 31(2):119–128. doi: 10.1089/end.2016.0219 CrossRefPubMedGoogle Scholar
  8. 8.
    Ferre R, Cornelis F, Verkarre V, et al. (2015) Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors. Eur J Radiol 84(3):360–365. doi: 10.1016/j.ejrad.2014.11.040 CrossRefPubMedGoogle Scholar
  9. 9.
    Park JJ, Kim CK (2017) Small (<4 cm) renal tumors with predominantly low signal intensity on T2-weighted images: differentiation of minimal-fat angiomyolipoma from renal cell carcinoma. AJR Am J Roentgenol 208(1):124–130. doi: 10.2214/AJR.16.16102 CrossRefPubMedGoogle Scholar
  10. 10.
    Helck A, Schonermarck U, Habicht A, et al. (2014) Determination of split renal function using dynamic CT-angiography: preliminary results. PLoS ONE 9(3):e91774. doi: 10.1371/journal.pone.0091774 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mazzei FG, Mazzei MA, Cioffi Squitieri N, et al. (2014) CT perfusion in the characterisation of renal lesions: an added value to multiphasic CT. Biomed Res Int 2014:135013. doi: 10.1155/2014/135013 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen C, Kang Q, Wei Q, et al. (2016) Correlation between CT perfusion parameters and Fuhrman grade in pTlb renal cell carcinoma. Abdom Radiol (NY) . doi: 10.1007/s00261-016-1009-z Google Scholar
  13. 13.
    Ng CS, Wang X, Faria SC, et al. (2010) Perfusion CT in patients with metastatic renal cell carcinoma treated with interferon. AJR Am J Roentgenol 194(1):166–171. doi: 10.2214/AJR.09.3105 CrossRefPubMedGoogle Scholar
  14. 14.
    Chen C, Liu Q, Hao Q, et al. (2014) Study of 320-slice dynamic volume CT perfusion in different pathologic types of kidney tumor: preliminary results. PLoS ONE 9(1):e85522. doi: 10.1371/journal.pone.0085522 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jinzaki M, Silverman SG, Akita H, et al. (2014) Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging 39(3):588–604. doi: 10.1007/s00261-014-0083-3 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jinzaki M, Tanimoto A, Narimatsu Y, et al. (1997) Angiomyolipoma: imaging findings in lesions with minimal fat. Radiology 205(2):497–502. doi: 10.1148/radiology.205.2.9356635 CrossRefPubMedGoogle Scholar
  17. 17.
    Silverman SG, Mortele KJ, Tuncali K, et al. (2007) Hyperattenuating renal masses: etiologies, pathogenesis, and imaging evaluation. Radiographics 27(4):1131–1143. doi: 10.1148/rg.274065147 CrossRefPubMedGoogle Scholar
  18. 18.
    Ishigami K, Pakalniskis MG, Leite LV, et al. (2015) Characterization of renal cell carcinoma, oncocytoma, and lipid-poor angiomyolipoma by unenhanced, nephrographic, and delayed phase contrast-enhanced computed tomography. Clin Imaging 39(1):76–84. doi: 10.1016/j.clinimag.2014.09.008 CrossRefPubMedGoogle Scholar
  19. 19.
    Kim JK, Park SY, Shon JH, et al. (2004) Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT. Radiology 230(3):677–684. doi: 10.1148/radiol.2303030003 CrossRefPubMedGoogle Scholar
  20. 20.
    Kim SH, Kim CS, Kim MJ, et al. (2016) Differentiation of clear cell renal cell carcinoma from other subtypes and fat-poor angiomyolipoma by use of quantitative enhancement measurement during three-phase MDCT. AJR Am J Roentgenol 206(1):W21–W28. doi: 10.2214/AJR.15.14666 CrossRefPubMedGoogle Scholar
  21. 21.
    Sung CK, Kim SH, Woo S, et al. (2016) Angiomyolipoma with minimal fat: differentiation of morphological and enhancement features from renal cell carcinoma at CT imaging. Acta Radiol 57(9):1114–1122. doi: 10.1177/0284185115618547 CrossRefPubMedGoogle Scholar
  22. 22.
    Kim JK, Kim TK, Ahn HJ, et al. (2002) Differentiation of subtypes of renal cell carcinoma on helical CT scans. AJR Am J Roentgenol 178(6):1499–1506. doi: 10.2214/ajr.178.6.1781499 CrossRefPubMedGoogle Scholar
  23. 23.
    Sheir KZ, El-Azab M, Mosbah A, et al. (2005) Differentiation of renal cell carcinoma subtypes by multislice computerized tomography. J Urol 174(2):451–455. doi: 10.1097/01.ju.0000165341.08396.a9 CrossRefPubMedGoogle Scholar
  24. 24.
    Yang CW, Shen SH, Chang YH, et al. (2013) Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomyolipoma? AJR Am J Roentgenol 201(5):1017–1028. doi: 10.2214/AJR.12.10204 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JY, Kim JK, Kim N, et al. (2008) CT histogram analysis: differentiation of angiomyolipoma without visible fat from renal cell carcinoma at CT imaging. Radiology 246(2):472–479. doi: 10.1148/radiol.2462061312 CrossRefPubMedGoogle Scholar
  26. 26.
    Catalano OA, Samir AE, Sahani DV, et al. (2008) Pixel distribution analysis: can it be used to distinguish clear cell carcinomas from angiomyolipomas with minimal fat? Radiology 247(3):738–746. doi: 10.1148/radiol.2473070785 CrossRefPubMedGoogle Scholar
  27. 27.
    Yan L, Liu Z, Wang G, et al. (2015) Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad Radiol 22(9):1115–1121. doi: 10.1016/j.acra.2015.04.004 CrossRefPubMedGoogle Scholar
  28. 28.
    Hodgdon T, McInnes MD, Schieda N, et al. (2015) Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 276(3):787–796. doi: 10.1148/radiol.2015142215 CrossRefPubMedGoogle Scholar
  29. 29.
    Kim MH, Lee J, Cho G, et al. (2013) MDCT-based scoring system for differentiating angiomyolipoma with minimal fat from renal cell carcinoma. Acta Radiol 54(10):1201–1209. doi: 10.1177/0284185113491087 CrossRefPubMedGoogle Scholar
  30. 30.
    Goh V, Ganeshan B, Nathan P, et al. (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1):165–171. doi: 10.1148/radiol.11110264 CrossRefPubMedGoogle Scholar
  31. 31.
    Ravanelli M, Farina D, Morassi M, et al. (2013) Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol 23(12):3450–3455. doi: 10.1007/s00330-013-2965-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Ching BC, Tan HS, Tan PH, et al. (2016) Differential radiologic characteristics of renal tumours on multiphasic computed tomography. Singapore Med J . doi: 10.11622/smedj.2016081 Google Scholar
  33. 33.
    Lam JS, Shvarts O, Said JW, et al. (2005) Clinicopathologic and molecular correlations of necrosis in the primary tumor of patients with renal cell carcinoma. Cancer 103(12):2517–2525. doi: 10.1002/cncr.21127 CrossRefPubMedGoogle Scholar
  34. 34.
    Hemmerlein B, Kugler A, Ozisik R, et al. (2001) Vascular endothelial growth factor expression, angiogenesis, and necrosis in renal cell carcinomas. Virchows Arch 439(5):645–652CrossRefPubMedGoogle Scholar
  35. 35.
    Beddy P, Genega EM, Ngo L, et al. (2014) Tumor necrosis on magnetic resonance imaging correlates with aggressive histology and disease progression in clear cell renal cell carcinoma. Clin Genitourin Cancer 12(1):55–62. doi: 10.1016/j.clgc.2013.07.006 CrossRefPubMedGoogle Scholar
  36. 36.
    Reiner CS, Roessle M, Thiesler T, et al. (2013) Computed tomography perfusion imaging of renal cell carcinoma: systematic comparison with histopathological angiogenic and prognostic markers. Investig Radiol 48(4):183–191. doi: 10.1097/RLI.0b013e31827c63a3 Google Scholar
  37. 37.
    Woo S, Cho JY, Kim SH, et al. (2014) Angiomyolipoma with minimal fat and non-clear cell renal cell carcinoma: differentiation on MDCT using classification and regression tree analysis-based algorithm. Acta Radiol 55(10):1258–1269. doi: 10.1177/0284185113513887 CrossRefPubMedGoogle Scholar
  38. 38.
    Hajdu SI, Foote FW, Jr. (1969) Angiomyolipoma of the kidney: report of 27 cases and review of the literature.J Urol 102 (4): 396-401. doi:Google Scholar
  39. 39.
    van den Berg E, Dijkhuizen T, Oosterhuis JW, et al. (1997) Cytogenetic classification of renal cell cancer. Cancer Genet Cytogenet 95(1):103–107CrossRefPubMedGoogle Scholar
  40. 40.
    Amin MB, Corless CL, Renshaw AA, et al. (1997) Papillary (chromophil) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol 21(6):621–635CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Chao Chen
    • 1
  • Qinqin Kang
    • 2
  • Bing Xu
    • 2
  • Zhang Shi
    • 2
  • Hairuo Guo
    • 3
  • Qiang Wei
    • 4
  • Yayun Lu
    • 2
  • Xinhuai Wu
    • 1
  1. 1.Department of RadiologyPLA Army General HospitalBeijingChina
  2. 2.Department of Radiology, Changhai Hospital of ShanghaiThe Second Military Medical UniversityShanghaiChina
  3. 3.Department of NeurologyPLA Army General HospitalBeijingChina
  4. 4.Department of Orthopaedics, Changhai Hospital of ShanghaiThe Second Military Medical UniversityShanghaiChina

Personalised recommendations