Molecular imaging of carotid artery atherosclerosis with PET: a systematic review



To conduct a systematic review of articles on PET imaging of carotid atherosclerosis with emphasis on clinical usefulness and comparison with other imaging modalities.


Research articles reporting carotid artery PET imaging with different radiotracers until 30 November 2018 were systematically searched for in Medline/PubMed, Scopus, Embase, Google Scholar, and Cochrane Library. Duplicates were removed, and editorials, case studies, and investigations on feasibility or reproducibility of PET imaging and of patients with end-stage diseases or immunosuppressive medications were omitted. After quality assessment of included articles using Joanna Briggs Institute checklists, all eligible articles were reviewed.


Of 1718 primary hits, 53 studies comprising 4472 patients, aged 47–91 years (78.8% males), were included and grouped under the following headlines: diagnostic performance, risk factors, laboratory findings, imaging modalities, and treatment. 18F-fluorodeoxyglucose (FDG) (49/53) and 18F-sodium fluoride (NaF) (5/53) were the most utilized tracers to visualize carotid wall inflammation and microcalcification, respectively. Higher carotid FDG uptake was demonstrated in patients with than without symptomatic carotid atherosclerosis. Normal carotid arteries presented with the lowest FDG uptake. In symptomatic atherosclerosis, carotid arteries ipsilateral to a cerebrovascular event had higher FDG uptake than the contralateral carotid artery. FDG uptake was significantly associated with age, male gender, and body mass index in healthy individuals, and in addition with arterial hypertension, hypercholesterolemia, and diabetes mellitus in patients. Histological assessment indicated a strong correlation between microcalcification and NaF uptake in symptomatic patients. Histological evidence of calcification correlated inversely with FDG uptake, which was associated with increased macrophage and CD68 count, both accounting for increased local inflammatory response.


FDG-PET visualizes the inflammatory part of carotid atherosclerosis enabling risk stratification to a certain degree, whereas NaF-PET seems to indicate long-term consequences of ongoing inflammation by demonstrating microcalcification allowing discrimination of atherosclerotic from normal arteries and suggesting clinically significant carotid atherosclerosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Organization WH. World health statistics 2016: monitoring health for the SDGs sustainable development goals. World Health Organization; 2016.

  2. 2.

    Lorenz MW, von Kegler S, Steinmetz H, Markus HS, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke. 2006;37(1):87–92.

    PubMed  Google Scholar 

  3. 3.

    Polak JF, Pencina MJ, O’leary DH, D’agostino RB. Common carotid artery intima-media thickness progression as a predictor of stroke in multi-ethnic study of atherosclerosis. Stroke. 2011;42(11):3017–21.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, Blomberg BA, et al. Evolving role of molecular imaging with 18 F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep. 2016;14(4):115–25.

    PubMed  Google Scholar 

  6. 6.

    McKenney-Drake ML, Moghbel MC, Paydary K, Alloosh M, Houshmand S, Moe S, et al. 18 F-NaF and 18 F-FDG as molecular probes in the evaluation of atherosclerosis. Eur J Nucl Med Mol Imaging. 2018:1–11.

  7. 7.

    Blomberg BA, Thomassen A, Takx RA, Hildebrandt MG, Simonsen JA, Buch-Olsen KM, et al. Delayed 18 F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol. 2014;21(3):588–97.

    PubMed  Google Scholar 

  8. 8.

    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    PubMed  Google Scholar 

  9. 9.

    Joanna Briggs Institute. Joanna Briggs Institute reviewers’ manual 2014. Adelaide: The Joanna Briggs Institute; 2014.

    Google Scholar 

  10. 10.

    Howick J, Phillips B, Ball C, Sackett D, Badenoch D, Straus S et al. Oxford Centre for Evidence-based Medicine—levels of evidence (March 2009). Centre for Evidence Based Medicine. 2009.

  11. 11.

    Skagen K, Johnsrud K, Evensen K, Scott H, Krohg-Sørensen K, Reier-Nilsen F, et al. Carotid plaque inflammation assessed with 18F-FDG PET/CT is higher in symptomatic compared with asymptomatic patients. Int J Stroke. 2015;10(5):730–6.

    PubMed  Google Scholar 

  12. 12.

    Cocker MS, Spence JD, Hammond R, Lum C, Wells G, Bernick J, et al. [18F]-Fluorodeoxyglucose PET/CT imaging as a marker of carotid plaque inflammation: comparison to immunohistology and relationship to acuity of events. Int J Cardiol. 2018;271:378–86.

    PubMed  Google Scholar 

  13. 13.

    Masteling MG, Zeebregts CJ, Tio RA, Breek J-C, Tietge UJ, de Boer JF, et al. High-resolution imaging of human atherosclerotic carotid plaques with micro 18 F-FDG PET scanning exploring plaque vulnerability. J Nucl Cardiol. 2011;18(6):1066–75.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kashiwazaki D, Yamamoto S, Akioka N, Kuwayama N, Noguchi K, Kuroda S. Inflammation coupling between unstable carotid plaque and spleen—a 18F-fluorodeoxyglucos positron emission tomography study. J Stroke Cerebrovasc Dis. 2018;27(11):3212–7.

    PubMed  Google Scholar 

  15. 15.

    Müller HFG, Viaccoz A, Fisch L, Bonvin C, Lovblad K-O, Ratib O, et al. 18FDG-PET-CT: an imaging biomarker of high-risk carotid plaques. Correlation to symptoms and microembolic signals. Stroke. 2014;45(12):3561–6.

    PubMed  Google Scholar 

  16. 16.

    Demeure F, Bouzin C, Roelants V, Bol A, Verhelst R, Astarci P, et al. Head-to-head comparison of inflammation and neovascularization in human carotid plaques: implications for the imaging of vulnerable plaques. Circ Cardiovasc Imaging. 2017;10(5):e005846.

    PubMed  Google Scholar 

  17. 17.

    Tahara N, Kai H, Nakaura H, Mizoguchi M, Ishibashi M, Kaida H, et al. The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose–positron emission tomography. Eur Heart J. 2007;28(18):2243–8.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Noh S-M, Choi WJ, Kang B-T, Jeong S-W, Lee DK, Schellingerhout D, et al. Complementarity between 18F-FDG PET/CT and ultrasonography or angiography in carotid plaque characterization. J Clin Neurol. 2013;9(3):176–85.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kim H-J, Oh M, Moon DH, Yu K-H, Kwon SU, Kim JS, et al. Carotid inflammation on 18F-fluorodeoxyglucose positron emission tomography associates with recurrent ischemic lesions. J Neurol Sci. 2014;347(1–2):242–5.

    PubMed  Google Scholar 

  20. 20.

    Arauz A, Hoyos L, Zenteno M, Mendoza R, Alexanderson E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography: pilot study. Clin Neurol Neurosurg. 2007;109(5):409–12.

    Article  PubMed  Google Scholar 

  21. 21.

    Font MA, Fernandez A, Carvajal A, Gamez C, Badimon L, Slevin M, et al. Imaging of early inflammation in low-to-moderate carotid stenosis by 18-FDG-PET. Front Biosci. 2009;14:3352–60.

    CAS  Google Scholar 

  22. 22.

    Kwee R, Truijman M, Mess W, Teule G, ter Berg J, Franke C, et al. Potential of integrated [18F] fluorodeoxyglucose positron-emission tomography/CT in identifying vulnerable carotid plaques. Am J Neuroradiol. 2011;32(5):950–4.

    CAS  PubMed  Google Scholar 

  23. 23.

    Græbe M, Pedersen SF, Højgaard L, Kjær A, Sillesen H. 18FDG PET and ultrasound echolucency in carotid artery plaques. JACC Cardiovasc Imaging. 2010;3(3):289–95.

    PubMed  Google Scholar 

  24. 24.

    Menezes LJ, Kotze CW, Agu O, Richards T, Brookes J, Goh VJ, et al. Investigating vulnerable atheroma using combined 18F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med. 2011;52(11):1698–703.

    PubMed  Google Scholar 

  25. 25.

    Rudd JH, Warburton E, Fryer TD, Jones H, Clark J, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.

    CAS  PubMed  Google Scholar 

  26. 26.

    Shaikh S, Welch A, Ramalingam S, Murray A, Wilson H, McKiddie F, et al. Comparison of fluorodeoxyglucose uptake in symptomatic carotid artery and stable femoral artery plaques. Br J Surg. 2014;101(4):363–70.

    CAS  PubMed  Google Scholar 

  27. 27.

    Quirce R, Martínez-Rodríguez I, Banzo I, Jiménez-Bonilla J, Martínez-Amador N, Ibáñez-Bravo S, et al. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results. Clin Physiol Funct Imaging. 2016;36(6):499–503.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Hop H, de Boer SA, Reijrink M, Kamphuisen PW, de Borst MH, Pol RA, et al. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol. 2018.

  29. 29.

    Quirce R, Martínez-Rodríguez I, De Arcocha TM, Jiménez-Bonilla JF, Banzo I, Rebollo M, et al. Contribution of 18F-sodium fluoride PET/CT to the study of the carotid atheroma calcification. Rev Esp Med Nucl Imagen Mol. 2013;32(1):22–5.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Zhang Y, Li H, Jia Y, Yang P, Zhao F, Wang W, et al. Noninvasive assessment of carotid plaques calcification by 18F-sodium fluoride accumulation: correlation with pathology. J Stroke Cerebrovasc Dis. 2018;27(7):1796–801.

    Article  PubMed  Google Scholar 

  31. 31.

    Noh TS, Moon S-H, Cho YS, Hong SP, Lee EJ, Choi JY, et al. Relation of carotid artery 18F-FDG uptake to C-reactive protein and Framingham risk score in a large cohort of asymptomatic adults. J Nucl Med. 2013;54(12):2070–6.

    CAS  PubMed  Google Scholar 

  32. 32.

    Moon SH, Noh TS, Cho YS, Hong SP, Hyun SH, Choi JY, et al. Association between nonalcoholic fatty liver disease and carotid artery inflammation evaluated by 18F-fluorodeoxyglucose positron emission tomography. Angiology. 2015;66(5):472–80.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Bucerius J, Duivenvoorden R, Mani V, Moncrieff C, Rudd JHF, Calcagno C, et al. Prevalence and risk factors of carotid vessel wall inflammation in coronary artery disease patients. FDG-PET and CT Imaging Study. 2011;4(11):1195–205.

    Article  Google Scholar 

  34. 34.

    Bucerius J, Mani V, Wong S, Moncrieff C, Izquierdo-Garcia D, Machac J, et al. Arterial and fat tissue inflammation are highly correlated : a prospective 18F-FDG PET/CT study. Eur J Nucl Med Mol Imaging. 2014;41(5):934–45.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kim S, Lee S, Kim JB, Na JO, Choi CU, Lim H-E, et al. Concurrent carotid inflammation in acute coronary syndrome as assessed by 18F-FDG PET/CT: a possible mechanistic link for ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(11):2547–54.

    Article  PubMed  Google Scholar 

  36. 36.

    Lee DH, Lee SJ, Lee D-J, Kwon SH, Jo K-S, An Y-S, et al. Carotid artery FDG uptake may serve as a biomarker for cardiovascular risk stratification in asymptomatic adults. Nucl Med Mol Imaging. 2014;48(3):196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Bernelot Moens SJ, Stoekenbroek RM, van der Valk FM, Verweij SL, Koelemay MJW, Verberne HJ, et al. Carotid arterial wall inflammation in peripheral artery disease is augmented by type 2 diabetes: a cross-sectional study. BMC Cardiovasc Disord. 2016;16(1):237.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Watanabe T, Kawasaki M, Tanaka R, Ono K, Kako N, Saeki M, et al. Anti-inflammatory and morphologic effects of pitavastatin on carotid arteries and thoracic aorta evaluated by integrated backscatter trans-esophageal ultrasound and PET/CT: a prospective randomized comparative study with pravastatin (EPICENTRE study). Cardiovasc Ultrasound. 2015;13(1):17.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Chróinín DN, Marnane M, Akijian L, Merwick Á, Fallon E, Horgan G, et al. Serum lipids associated with inflammation-related PET-FDG uptake in symptomatic carotid plaque. Neurology. 2014;82(19):1693–9.

    PubMed  Google Scholar 

  40. 40.

    Choi Y-S, Youn H-J, Chung W-B, Hwang H-J, Lee D-H, Park C-S, et al. Uptake of F-18 FDG and ultrasound analysis of carotid plaque. J Nucl Cardiol. 2011;18(2):267–72.

    PubMed  Google Scholar 

  41. 41.

    Kim J, Choi K-H, Song H-C, Kim J-T, Park M-S, Cho K-H. 18 F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients. Eur J Nucl Med Mol Imaging. 2016;43(12):2228–35.

    PubMed  Google Scholar 

  42. 42.

    Fifer KM, Qadir S, Subramanian S, Vijayakumar J, Figueroa AL, Truong QA, et al. Positron emission tomography measurement of periodontal 18F-fluorodeoxyglucose uptake is associated with histologically determined carotid plaque inflammation. J Am Coll Cardiol. 2011;57(8):971–6.

    PubMed  Google Scholar 

  43. 43.

    Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818–24.

    PubMed  Google Scholar 

  44. 44.

    Kim CJ, Han EJ, Chu E-H, Hwang B-H, Kim J-J, Seung K-B, et al. Effect of moderate-intensity statin therapy on plaque inflammation in patients with acute coronary syndrome: a prospective interventional study evaluated by 18F-FDG PET/CT of the carotid artery. Cardiol J. 2018.

  45. 45.

    Oh M, Lee CW, Lee HS, Chang M, Ahn JM, Park DW, et al. Similar impact of clopidogrel or ticagrelor on carotid atherosclerotic plaque inflammation. Clin Cardiol. 2016;39(11):646–52.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mizoguchi M, Tahara N, Tahara A, Nitta Y, Kodama N, Oba T, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes: a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging. 2011;4(10):1110–8.

    PubMed  Google Scholar 

  47. 47.

    Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52(3):362–8.

    Article  PubMed  Google Scholar 

  48. 48.

    Figueroa AL, Subramanian SS, Cury RC, Truong QA, Gardecki JA, Tearney GJ, et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ Cardiovasc Imaging. 2012;5(1):69–77.

    PubMed  Google Scholar 

  49. 49.

    Liu J, Kerwin WS, Caldwell JH, Ferguson MS, Hippe DS, Alessio AM, et al. High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake. Int Journal Cardiovasc Imaging. 2016;32(1):145–52.

    CAS  Google Scholar 

  50. 50.

    Johnsrud K, Skagen K, Seierstad T, Skjelland M, Russell D, Revheim M-E. 18 F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques. J Nucl Cardiol. 2017:1–11.

  51. 51.

    Saito H, Kuroda S, Hirata K, Magota K, Shiga T, Tamaki N, et al. Validity of dual MRI and 18F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis. 2013;35(4):370–7.

    PubMed  Google Scholar 

  52. 52.

    Graebe M, Pedersen SF, Borgwardt L, Højgaard L, Sillesen H, Kjær A. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg. 2009;37(6):714–21.

    CAS  PubMed  Google Scholar 

  53. 53.

    Pedersen SF, Graebe M, Hag AMF, Hoejgaard L, Sillesen H, Kjaer A. Microvessel density but not neoangiogenesis is associated with 18 F-FDG uptake in human atherosclerotic carotid plaques. Mol Imaging Biol. 2012;14(3):384–92.

    PubMed  Google Scholar 

  54. 54.

    Pedersen SF, Græbe M, Hag AMF, Højgaard L, Sillesen H, Kjær A. 18F-FDG imaging of human atherosclerotic carotid plaques reflects gene expression of the key hypoxia marker HIF-1α. Am J Nucl Med Mol Imaging. 2013;3(5):384.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pedersen SF, Graebe M, Hag AMF, Højgaard L, Sillesen H, Kjaer A. Gene expression and 18FDG uptake in atherosclerotic carotid plaques. Nucl Med Commun. 2010;31(5):423–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Moustafa RR, Izquierdo-Garcia D, Jones PS, Graves MJ, Fryer TD, Gillard JH, et al. Watershed infarcts in transient ischemic attack/minor stroke with ≥50% carotid stenosis: hemodynamic or embolic? Stroke. 2010;41(7):1410–6.

    PubMed  Google Scholar 

  57. 57.

    Moustafa RR, Izquierdo-Garcia D, Fryer TD, Graves MJ, Rudd JH, Gillard JH, et al. Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circ Cardiovasc Imaging. 2010;3(5):536–41.

    PubMed  Google Scholar 

  58. 58.

    Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18 F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016;43(2):270–9.

    PubMed  Google Scholar 

  59. 59.

    Calcagno C, Ramachandran S, Izquierdo-Garcia D, Mani V, Millon A, Rosenbaum D, et al. The complementary roles of dynamic contrast-enhanced MRI and 18 F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis. Eur J Nucl Med Mol Imaging. 2013;40(12):1884–93.

    CAS  PubMed  Google Scholar 

  60. 60.

    Wang J, Liu H, Sun J, Xue H, Xie L, Yu S, et al. Varying correlation between 18F-fluorodeoxyglucose positron emission tomography and dynamic contrast-enhanced MRI in carotid atherosclerosis: implications for plaque inflammation. Stroke. 2014;45(6):1842–5.

    CAS  PubMed  Google Scholar 

  61. 61.

    Bucerius J, Vijgen GH, Brans B, Bouvy ND, Bauwens M, Rudd JH, et al. Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues. Medicine. 2015;94(20).

  62. 62.

    Virmani R, Kolodgie Frank D, Burke Allen P, Finn Aloke V, Gold Herman K, Tulenko Thomas N, et al. Atherosclerotic plaque progression and vulnerability to rupture. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50(10):1611–20.

    Article  PubMed  Google Scholar 

  64. 64.

    Chen NX, Moe SM. Pathophysiology of vascular calcification. Current osteoporosis reports. 2015;13(6):372–80.

    CAS  PubMed  Google Scholar 

  65. 65.

    Fiz F, Morbelli S, Piccardo A, Bauckneht M, Ferrarazzo G, Pestarino E, et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity. J Nucl Med. 2015;56(7):1019–23.

    CAS  PubMed  Google Scholar 

  66. 66.

    Irkle A, Vesey A, Lewis D, Skepper J, Bird J, Dweck M. Identifying active vascular microcalcification by (18) F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Butcovan D, Mocanu V, Baran D, Ciurescu D, Tinica G. Assessment of vulnerable and unstable carotid atherosclerotic plaques on endarterectomy specimens. Exp Ther Med. 2016;11(5):2028–32.

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Stoll G, Bendszus M. Inflammation and atherosclerosis. Stroke. 2006;37(7):1923–32.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    McColl B, Allan S, Rothwell N. Systemic infection, inflammation and acute ischemic stroke. Neuroscience. 2009;158(3):1049–61.

    CAS  PubMed  Google Scholar 

  70. 70.

    Calvert PA, Liew T-V, Gorenne I, Clarke M, Costopoulos C, Obaid DR, et al. Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity. Arterioscler Thromb Vasc Biol. 2011;31(9):2157–64.

    CAS  PubMed  Google Scholar 

  71. 71.

    McVeigh GE, Allen PB, Morgan DR, Hanratty CG, Silke B. Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis. Clin Sci. 2001;100(4):387–93.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J. 2010;40(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Sader MA, Celermajer DS. Endothelial function, vascular reactivity and gender differences in the cardiovascular system. Cardiovasc Res. 2002;53(3):597–604.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521–74.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Gao F, Lucke-Wold BP, Li X, Logsdon AF, Xu L-C, Xu S, et al. Reduction of endothelial nitric oxide increases the adhesiveness of constitutive endothelial membrane ICAM-1 through Src-mediated phosphorylation. Front Physiol. 2018;8(1124).

  76. 76.

    Shimbo D, Muntner P, Mann D, Viera AJ, Homma S, Polak JF, et al. Endothelial dysfunction and the risk of hypertension: the multi-ethnic study of atherosclerosis. Hypertension. 2010;55(5):1210–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Halcox Julian PJ, Donald Ann E, Ellins E, Witte Daniel R, Shipley Martin J, Brunner Eric J, et al. Endothelial function predicts progression of carotid intima-media thickness. Circulation. 2009;119(7):1005–12.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Høilund-Carlsen PF, Moghbel MC, Gerke O, Alavi A. Evolving role of PET in detecting and characterizing atherosclerosis. PET Clinics. 2019;14(2):197–209.

    Article  PubMed  Google Scholar 

  79. 79.

    Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Qiao J-H, Mishra V, Fishbein MC, Sinha SK, Rajavashisth TB. Multinucleated giant cells in atherosclerotic plaques of human carotid arteries: identification of osteoclast-like cells and their specific proteins in artery wall. Exp Mol Pathol. 2015;99(3):654–62.

    CAS  PubMed  Google Scholar 

  81. 81.

    Grønholdt M-LM, Nordestgaard BG, Bentzon J, Wiebe BM, Zhou J, Falk E, et al. Macrophages are associated with lipid-rich carotid artery plaques, echolucency on B-mode imaging, and elevated plasma lipid levels. J Vasc Surg. 2002;35(1):137–45.

    Article  PubMed  Google Scholar 

  82. 82.

    Prabhakaran S, Singh R, Zhou X, Ramas R, Sacco RL, Rundek T. Presence of calcified carotid plaque predicts vascular events: the Northern Manhattan Study. Atherosclerosis. 2007;195(1):e197–201.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Riccio SA, House AA, Spence JD, Fenster A, Parraga G. Carotid ultrasound phenotypes in vulnerable populations. Cardiovasc Ultrasound. 2006;4(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Kwee RM, Teule GJ, van Oostenbrugge RJ, Mess WH, Prins MH, van der Geest RJ, et al. Multimodality imaging of carotid artery plaques: 18 F-fluoro-2-deoxyglucose positron emission tomography, computed tomography, and magnetic resonance imaging. Stroke. 2009;40(12):3718–24.

    PubMed  Google Scholar 

  85. 85.

    Shaalan WE, Cheng H, Gewertz B, McKinsey JF, Schwartz LB, Katz D, et al. Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J Vasc Surg. 2004;40(2):262–9.

    Article  PubMed  Google Scholar 

  86. 86.

    Silvera SS, Aidi HE, Rudd JHF, Mani V, Yang L, Farkouh M, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis. 2009;207(1):139–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241(2):459–68.

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Nandalur KR, Baskurt E, Hagspiel KD, Phillips CD, Kramer CM. Calcified carotid atherosclerotic plaque is associated less with ischemic symptoms than is noncalcified plaque on MDCT. Am J Roentgenol. 2005;184(1):295–8.

    Article  Google Scholar 

  89. 89.

    Waters DD, Ho JE, Boekholdt SM, DeMicco DA, Kastelein JJ, Messig M, et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J Am Coll Cardiol. 2013;61(2):148–52.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Reza Piri.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology

Electronic supplementary material


(DOCX 383 kb)


(DOCX 17 kb)


(DOCX 13 kb)


(DOCX 51 kb)


(DOCX 22 kb)


(DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piri, R., Gerke, O. & Høilund-Carlsen, P.F. Molecular imaging of carotid artery atherosclerosis with PET: a systematic review. Eur J Nucl Med Mol Imaging 47, 2016–2025 (2020).

Download citation


  • Inflammation
  • Carotid artery
  • Atherosclerosis
  • Positron emission tomography
  • Systematic review
  • 18F-fluorodeoxyglucose
  • 18F-sodium fluoride