Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma

Abstract

Purpose

Intrahepatic cholangiocarcinoma (ICC) is associated with a poor prognosis with surgical resection offering the best chance for long-term survival and potential cure. However, in up to 36% of patients who undergo surgery, more extensive disease is found at time of operation requiring cancellation of surgery. PET/MR is a novel hybrid technology that might improve local and whole-body staging in ICC patients, potentially influencing clinical management. This study was aimed to investigate the possible management implications of PET/MR, relative to conventional imaging, in patients affected by untreated intrahepatic cholangiocarcinoma.

Methods

Retrospective review of the clinicopathologic features of 37 patients with iCCC, who underwent PET/MR between September 2015 and August 2018, was performed to investigate the management implications that PET/MR had exerted on the affected patients, relative to conventional imaging.

Results

Of the 37 patients enrolled, median age 63.5 years, 20 (54%) were female. The same day PET/CT was performed in 26 patients. All patients were iCCC-treatment-naïve. Conventional imaging obtained as part of routine clinical care demonstrated early-stage resectable disease for 15 patients and advanced stage disease beyond the scope of surgical resection for 22. PET/MR modified the clinical management of 11/37 (29.7%) patients: for 5 patients (13.5%), the operation was cancelled due to identification of additional disease, while 4 “inoperable” patients (10.8%) underwent an operation. An additional 2 patients (5.4%) had a significant change in their operative plan based on PET/MR.

Conclusions

When compared with standard imaging, PET/MR significantly influenced the treatment plan in 29.7% of patients with iCCC.

Trial registration

2018P001334

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ICC:

intrahepatic cholangiocarcinoma

TACE:

trans-arterial chemoembolization

PET:

positron emission tomography

CT:

computed tomography

MR:

magnetic resonance

PET/CT:

positron emission tomography/computed tomography

PET/MR:

positron emission tomography/magnetic resonance

CE:

contrast-enhanced

NCE:

non-contrast-enhanced

mOS:

median overall survival

DWI:

diffusion-weighted imaging

ADC:

apparent diffusion coefficient

18F-FDG:

18F-fluorodeoxyglucose

SD:

standard deviation

NCCN:

national comprehensive cancer network

EBRT:

extracorporeal beam radiation therapy

References

  1. 1.

    Saha SK, Zhu AX, Fuchs CS, Brooks GA. Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise. Oncologist. 2016;21:594–9. https://doi.org/10.1634/theoncologist.2015-0446.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma-evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15:95–111. https://doi.org/10.1038/nrclinonc.2017.157.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Choi S-B, Kim K-S, Choi J-Y, Park S-W, Choi J-S, Lee W-J, et al. The prognosis and survival outcome of intrahepatic cholangiocarcinoma following surgical resection: association of lymph node metastasis and lymph node dissection with survival. Ann Surg Oncol. 2009;16:3048–56. https://doi.org/10.1245/s10434-009-0631-1.

    Article  PubMed  Google Scholar 

  4. 4.

    Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg. 2008;248:84–96. https://doi.org/10.1097/SLA.0b013e318176c4d3.

    Article  PubMed  Google Scholar 

  5. 5.

    Kiefer MV, Albert M, McNally M, Robertson M, Sun W, Fraker D, et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer. 2011;117:1498–505. https://doi.org/10.1002/cncr.25625.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Park SY, Kim JH, Yoon HJ, Lee IS, Yoon HK, Kim KP. Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clin Radiol. 2011;66:322–8. https://doi.org/10.1016/j.crad.2010.11.002.

    Article  PubMed  Google Scholar 

  7. 7.

    Kuhlmann JB, Euringer W, Spangenberg HC, Breidert M, Blum HE, Harder J, et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol. 2012;24:437–43. https://doi.org/10.1097/MEG.0b013e3283502241.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hoffmann R-T, Paprottka PM, Schön A, Bamberg F, Haug A, Dürr E-M, et al. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc Intervent Radiol. 2012;35:105–16. https://doi.org/10.1007/s00270-011-0142-x.

    Article  PubMed  Google Scholar 

  9. 9.

    Rafi S, Piduru SM, El-Rayes B, Kauh JS, Kooby DA, Sarmiento JM, et al. Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic cholangiocarcinoma: survival, efficacy, and safety study. Cardiovasc Intervent Radiol. 2013;36:440–8. https://doi.org/10.1007/s00270-012-0463-4.

    Article  PubMed  Google Scholar 

  10. 10.

    Tao R, Krishnan S, Bhosale PR, Javle MM, Aloia TA, Shroff RT, et al. Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis. J Clin Oncol. 2016;34:219–26. https://doi.org/10.1200/JCO.2015.61.3778.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Valle JW, Furuse J, Jitlal M, Beare S, Mizuno N, Wasan H, et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol. 2014;25:391–8. https://doi.org/10.1093/annonc/mdt540.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    NCCN Guidelines Version 3.2018.

  13. 13.

    Seo S, Hatano E, Higashi T, Nakajima A, Nakamoto Y, Tada M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts lymph node metastasis, P-glycoprotein expression, and recurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery. 2008;143:769–77. https://doi.org/10.1016/j.surg.2008.01.010.

    Article  PubMed  Google Scholar 

  14. 14.

    Kim JY, Kim M-H, Lee TY, Hwang CY, Kim JS, Yun S-C, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103:1145–51. https://doi.org/10.1111/j.1572-0241.2007.01710.x.

    Article  PubMed  Google Scholar 

  15. 15.

    Angliviel B, Benoist S, Penna C, El Hajjam M, Chagnon S, Julié C, et al. Impact of chemotherapy on the accuracy of computed tomography scan for the evaluation of colorectal liver metastases. Ann Surg Oncol. 2009;16:1247–53. https://doi.org/10.1245/s10434-009-0385-9.

    Article  PubMed  Google Scholar 

  16. 16.

    Berger-Kulemann V, Schima W, Baroud S, Koelblinger C, Kaczirek K, Gruenberger T, et al. Gadoxetic acid-enhanced 3.0 T MR imaging versus multidetector-row CT in the detection of colorectal metastases in fatty liver using intraoperative ultrasound and histopathology as a standard of reference. Eur J Surg Oncol. 2012;38:670–6. https://doi.org/10.1016/j.ejso.2012.05.004.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Marion-Audibert A-M, Vullierme M-P, Ronot M, Mabrut J-Y, Sauvanet A, Zins M, et al. Routine MRI with DWI sequences to detect liver metastases in patients with potentially resectable pancreatic ductal carcinoma and normal liver CT: a prospective multicenter study. AJR Am J Roentgenol. 2018:W1–9. https://doi.org/10.2214/AJR.18.19640.

  18. 18.

    Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S, Jochum W, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45:43–50. https://doi.org/10.1016/j.jhep.2006.03.009.

    Article  PubMed  Google Scholar 

  19. 19.

    Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS, Delbeke D. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg. 2004;8:90–7.

    Article  Google Scholar 

  20. 20.

    Lee Y, Yoo IR, Boo SH, Kim H, Park HL, Hyun OJ. The role of F-18 FDG PET/CT in intrahepatic cholangiocarcinoma. Nucl Med Mol Imaging. 2017;51:69–78. https://doi.org/10.1007/s13139-016-0440-y.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kim Y-J, Yun M, Lee WJ, Kim KS, Lee JD. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging. 2003;30:1467–72. https://doi.org/10.1007/s00259-003-1297-8.

    Article  PubMed  Google Scholar 

  22. 22.

    Moon CM, Bang S, Chung JB, Park SW, Song SY, Yun M, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. J Gastroenterol Hepatol. 2008;23:759–65. https://doi.org/10.1111/j.1440-1746.2007.05173.x.

    Article  PubMed  Google Scholar 

  23. 23.

    Olthof S-C, Othman A, Clasen S, Schraml C, Nikolaou K, Bongers M. Imaging of cholangiocarcinoma. Visc Med. 2016;32:402–10. https://doi.org/10.1159/000453009.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients-a hypothesis-generating exploratory study. Radiology. 2013;269:857–69. https://doi.org/10.1148/radiol.13131306.

    Article  PubMed  Google Scholar 

  25. 25.

    Catalano OA, Nicolai E, Rosen BR, Luongo A, Catalano M, Iannace C, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer. 2015;112:1452–60. https://doi.org/10.1038/bjc.2015.112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Melsaether AN, Raad RA, Pujara AC, Ponzo FD, Pysarenko KM, Jhaveri K, et al. Comparison of whole-body (18) F FDG PET/MR imaging and whole-body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology. 2016;281:193–202. https://doi.org/10.1148/radiol.2016151155.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Souvatzoglou M, Eiber M, Takei T, Fürst S, Maurer T, Gaertner F, et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:1486–99. https://doi.org/10.1007/s00259-013-2467-y.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Computer software. Vienna, Austria: R Core Team; 2018.

  29. 29.

    Fay M. Two-sided exact tests and matching confidence intervals for discrete data.

  30. 30.

    Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, et al. Thoracic staging with 18F-FDG PET/MR in non-small cell lung cancer-does it change therapeutic decisions in comparison to 18F-FDG PET/CT? Eur Radiol. 2017;27:681–8. https://doi.org/10.1007/s00330-016-4397-0.

    Article  PubMed  Google Scholar 

  31. 31.

    Chan S-C, Yeh C-H, Yen T-C, Ng S-H, Chang JT-C, Lin C-Y, et al. Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging. 2018;45:1297–308. https://doi.org/10.1007/s00259-018-3986-3.

    Article  PubMed  Google Scholar 

  32. 32.

    Eiber M, Rauscher I, Souvatzoglou M, Maurer T, Schwaiger M, Holzapfel K, et al. Prospective head-to-head comparison of 11C-choline-PET/MR and 11C-choline-PET/CT for restaging of biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:2179–88. https://doi.org/10.1007/s00259-017-3797-y.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Catalano OA, Daye D, Signore A, Iannace C, Vangel M, Luongo A, et al. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol. 2017;51:281–8. https://doi.org/10.3892/ijo.2017.4012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Goere D, Wagholikar GD, Pessaux P, Carrère N, Sibert A, Vilgrain V, et al. Utility of staging laparoscopy in subsets of biliary cancers: laparoscopy is a powerful diagnostic tool in patients with intrahepatic and gallbladder carcinoma. Surg Endosc. 2006;20:721–5. https://doi.org/10.1007/s00464-005-0583-x.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Weber SM, Jarnagin WR, Klimstra D, DeMatteo RP, Fong Y, Blumgart LH. Intrahepatic cholangiocarcinoma: resectability, recurrence pattern, and outcomes. J Am Coll Surg. 2001;193:384–91.

    CAS  Article  Google Scholar 

  36. 36.

    Catalano OA, Umutlu L, Fuin N, Hibert ML, Scipioni M, Pedemonte S, et al. Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). Eur J Nucl Med Mol Imaging. 2018;45:1–8. https://doi.org/10.1007/s00259-018-4084-2.

    CAS  Article  Google Scholar 

  37. 37.

    Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys. 2015;2:21. https://doi.org/10.1186/s40658-015-0125-0.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Polycarpou I, Tsoumpas C, King AP, Marsden PK. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol. 2014;59:697–713. https://doi.org/10.1088/0031-9155/59/3/697.

    Article  PubMed  Google Scholar 

  39. 39.

    Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference. Med Phys. 2014;41:091905. https://doi.org/10.1118/1.4892602.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Liu C, Pierce LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol. 2009;54:7345–62. https://doi.org/10.1088/0031-9155/54/24/007.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Blackall JM, King AP, Penney GP, Adam A, Hawkes DJ. A statistical model of respiratory motion and deformation of the liver. In: Niessen WJ, Viergever MA, editors. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2001. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001. p. 1338–40. https://doi.org/10.1007/3-540-45468-3_219.

  42. 42.

    Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo D, Pedemonte S, et al. Concurrent respiratory motion correction of abdominal PET and DCE-MRI using a compressed sensing approach. J Nucl Med. 2018. https://doi.org/10.2967/jnumed.117.203943.

  43. 43.

    Bächler P, Baladron MJ, Menias C, Beddings I, Loch R, Zalaquett E, et al. Multimodality imaging of liver infections: differential diagnosis and potential pitfalls. Radiographics. 2016;36:1001–23. https://doi.org/10.1148/rg.2016150196.

    Article  PubMed  Google Scholar 

  44. 44.

    Chan JH, Tsui EY, Luk SH, Fung AS, Yuen MK, Szeto ML, et al. Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging. 2001;26:161–5. https://doi.org/10.1107/s002610000122.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Catalano OA, Sahani DV, Forcione DG, Czermak B, Liu C-H, Soricelli A, et al. Biliary infections: spectrum of imaging findings and management. Radiographics. 2009;29:2059–80. https://doi.org/10.1148/rg.297095051.

    Article  PubMed  Google Scholar 

  46. 46.

    Imaging of the biliary tree: infection, inflammation and infiltration. https://appliedradiology.com/articles/imaging-of-the-biliary-tree-infection-inflammation-and-infiltration. Accessed 25 Nov 2018.

Download references

Acknowledgements

We would like to remember and acknowledge Pierpaolo Catalano, JD, for his continuous support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Onofrio A. Catalano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Clinical trial registration

This retrospective study had not been registered with any agency. It has been conducted under IRB approval granted by Partners Healthcare Institutional Review Board (Protocol No. 2018P001334). Patient consent has been waived.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Patient consent has been waived.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cristina Ferrone and Lipika Goyal share first authorship.

This article is part of the Topical Collection on Oncology – Digestive tract.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferrone, C., Goyal, L., Qadan, M. et al. Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 47, 1871–1884 (2020). https://doi.org/10.1007/s00259-019-04558-3

Download citation

Keywords

  • PET/MR
  • Cholangiocarcinoma
  • Clinical management
  • Staging