Skip to main content
Log in

Diagnostic accuracy of DAT-SPECT and MIBG scintigraphy for dementia with Lewy bodies: an updated systematic review and Bayesian latent class model meta-analysis

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Imperfect clinical reference standards can preclude accurately estimating the diagnostic accuracy of DAT-SPECT and MIBG myocardial scintigraphy for diagnosing DLB. To investigate the validity of unadjusted accuracy, we updated our previous meta-analysis.

Methods

Literature search was updated to March 18, 2018. We also examined published systematic review reports. Two investigators extracted data and rated study validity using the QUADAS-2 tool. We performed a Bayesian latent class model meta-analysis accounting for imperfect reference standards.

Results

We evaluated 27 studies including 2236 patients. With the exception of two DAT-SPECT studies that involved postmortem neuropathological verification, studies were susceptible to bias from imperfect reference standards. Compared with the unadjusted accuracy estimates, the adjusted sensitivity values were similar, whereas the adjusted specificity values were generally lower for detecting α-synuclein pathology in the brain. The adjusted summary sensitivity and specificity were 0.86 (95% credible interval [CrI], 0.76–0.95) and 0.81 (CrI, 0.70–0.92), and 0.93 (CrI, 0.74–1.00) and 0.75 (CI, 0.47–0.94) for visual and semi-quantitative assessments of DAT-SPECT, respectively; 0.92 (CrI, 0.81–0.99) and 0.80 (CrI, 0.67–0.93), and 0.87 (CrI, 0.74–0.98) and 0.80 (CrI, 0.69–0.93), for delayed- and early-phase scans of MIBG scintigraphy, respectively. When diagnosing the typical clinical syndrome, the adjusted accuracy values were similar to the unadjusted estimates. The adjusted sensitivity and specificity were 0.89 (CrI, 0.75–0.98) and 0.87 (CrI, 0.72–0.97), and 0.97 (CrI, 0.78–1.0) and 0.70 (CrI, 0.43–0.92) for visual and semi-quantitative assessments of DAT-SPECT, respectively; and 0.93 (CrI, 0.81–0.98) and 0.90 (CrI, 0.73–0.97), and 0.85 (CrI, 0.66–0.96) and 0.96 (95% CI, 0.83–1.0) for delayed- and early-phase scans of MIBG scintigraphy, respectively.

Conclusions

In our adjusted analyses, both imaging biomarkers had high diagnostic accuracy for detecting the hallmark pathology in the brain and for diagnosing the typical clinical syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vann Jones SA, O'Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44:673–83. https://doi.org/10.1017/s0033291713000494.

    Article  CAS  PubMed  Google Scholar 

  2. Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. Lancet. 2015;386:1683–97. https://doi.org/10.1016/s0140-6736(15)00462-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396:67–72. https://doi.org/10.1016/j.neulet.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  4. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702. https://doi.org/10.1007/s00401-010-0664-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beach TG, Adler CH, Serrano G, Sue LI, Walker DG, Dugger BN, et al. Prevalence of submandibular gland synucleinopathy in Parkinson’s disease, dementia with Lewy bodies and other Lewy body disorders. J Park Dis. 2016;6:153–63. https://doi.org/10.3233/jpd-150680.

    Article  CAS  Google Scholar 

  6. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47:1113–24.

    Article  CAS  PubMed  Google Scholar 

  7. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–72. https://doi.org/10.1212/01.wnl.0000187889.17253.b1.

    Article  CAS  PubMed  Google Scholar 

  8. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100. https://doi.org/10.1212/wnl.0000000000004058.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Donaghy PC, McKeith IG. The clinical characteristics of dementia with Lewy bodies and a consideration of prodromal diagnosis. Alzheimers Res Ther. 2014;6:46. https://doi.org/10.1186/alzrt274.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53:154–63. https://doi.org/10.2967/jnumed.111.100784.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshita M, Taki J, Yamada M. A clinical role for [I-123] MIBG myocardial scintigraphy in the distinction between dementia of the Alzheimer’s-type and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2001;71:583–8. https://doi.org/10.1136/jnnp.71.5.583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu JL, Clinthorne NH, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med. 1981;22:22–31.

    CAS  PubMed  Google Scholar 

  13. Yoshita M, Arai H, Arai H, Arai T, Asada T, Fujishiro H, et al. Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS One. 2015;10:e0120540. https://doi.org/10.1371/journal.pone.0120540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCleery J, Morgan S, Bradley KM, Noel-Storr AH, Ansorge O, Hyde C. Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies. Cochrane Database Syst Rev. 2015;1:Cd010633. https://doi.org/10.1002/14651858.CD010633.pub2.

    Article  PubMed  Google Scholar 

  15. Beach TG. A review of biomarkers for neurodegenerative disease: will they swing us across the valley? Neurol Ther. 2017;6:5–13. https://doi.org/10.1007/s40120-017-0072-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mishima A, Nihashi T, Ando Y, Kawai H, Kato T, Ito K, et al. Biomarkers differentiating dementia with Lewy bodies from other dementias: a meta-analysis. J Alzheimers Dis. 2015;50:161–74. https://doi.org/10.3233/jad-150675.

    Article  Google Scholar 

  17. Dendukuri N, Schiller I, Joseph L, Pai M. Bayesian meta-analysis of the accuracy of a test for tuberculous pleuritis in the absence of a gold standard reference. Biometrics. 2012;68:1285–93. https://doi.org/10.1111/j.1541-0420.2012.01773.x.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Menten J, Boelaert M, Lesaffre E. Bayesian meta-analysis of diagnostic tests allowing for imperfect reference standards. Stat Med. 2013;32:5398–413. https://doi.org/10.1002/sim.5959.

    Article  CAS  PubMed  Google Scholar 

  19. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, the P-DTAG, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA Statement. JAMA. 2018;319:388–96. https://doi.org/10.1001/jama.2017.19163.

    Article  PubMed  Google Scholar 

  20. Rutjes AW, Reitsma JB, Vandenbroucke JP, Glas AS, Bossuyt PM. Case-control and two-gate designs in diagnostic accuracy studies. Clin Chem. 2005;51:1335–41. https://doi.org/10.1373/clinchem.2005.048595.

    Article  CAS  PubMed  Google Scholar 

  21. Whiting PF, Rutjes AW, Westwood ME, Mallett S. A systematic review classifies sources of bias and variation in diagnostic test accuracy studies. J Clin Epidemiol. 2013;66:1093–104. https://doi.org/10.1016/j.jclinepi.2013.05.014.

    Article  PubMed  Google Scholar 

  22. Thomas AJ, Attems J, Colloby SJ, O'Brien JT, McKeith I, Walker R, et al. Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB. Neurology. 2017;88:276–83. https://doi.org/10.1212/wnl.0000000000003512.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferman TJ, Boeve BF, Smith GE, Lin SC, Silber MH, Pedraza O, et al. Inclusion of RBD improves the diagnostic classification of dementia with Lewy bodies. Neurology. 2011;77:875–82. https://doi.org/10.1212/WNL.0b013e31822c9148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phillips B, Stewart LA, Sutton AJ. ‘Cross hairs’ plots for diagnostic meta-analysis. Res Synth Methods. 2010;1:308–15. https://doi.org/10.1002/jrsm.26.

    Article  PubMed  Google Scholar 

  25. Welton NJ, Sutton AJ, Cooper NJ, Abrams KR, Ades AE. Model critique and evidence consistency in random effects meta-analysis. Evidence synthesis for decision making in healthcare: John Wiley & Sons, Ltd; 2012. p. 115–37.

  26. Treglia G, Cason E, Cortelli P, Gabellini A, Liguori R, Bagnato A, et al. Iodine-123 metaiodobenzylguanidine scintigraphy and iodine-123 ioflupane single photon emission computed tomography in Lewy body diseases: complementary or alternative techniques? J Neuroimaging. 2014;24:149–54. https://doi.org/10.1111/j.1552-6569.2012.00774.x.

    Article  PubMed  Google Scholar 

  27. Tiraboschi P, Corso A, Guerra UP, Nobili F, Piccardo A, Calcagni ML, et al. 123 I-2Beta-carbomethoxy-3beta-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography and 123 I-metaiodobenzylguanidine myocardial scintigraphy in differentiating dementia with Lewy bodies from other dementias: a comparative study. Ann Neurol. 2016;80:368–78. https://doi.org/10.1002/ana.24717.

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu S, Hirao K, Kanetaka H, Namioka N, Hatanaka H, Hirose D, et al. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2016;43:184–92. https://doi.org/10.1007/s00259-015-3146-y.

    Article  CAS  PubMed  Google Scholar 

  29. Kemp PM, Clyde K, Holmes C. Impact of 123I-FP-CIT (DaTSCAN) SPECT on the diagnosis and management of patients with dementia with Lewy bodies: a retrospective study. Nucl Med Commun. 2011;32:298–302. https://doi.org/10.1097/MNM.0b013e328343d4ec.

    Article  PubMed  Google Scholar 

  30. O'Brien JT, McKeith IG, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Diagnostic accuracy of 123I-FP-CIT SPECT in possible dementia with Lewy bodies. Br J Psychiatry. 2009;194:34–9. https://doi.org/10.1192/bjp.bp.108.052050.

    Article  PubMed  Google Scholar 

  31. Spehl TS, Frings L, Hellwig S, Weiller C, Hull M, Meyer PT, et al. Role of semiquantitative assessment of regional binding potential in 123I-FP-CIT SPECT for the differentiation of frontotemporal dementia, dementia with Lewy bodies, and Alzheimer’s dementia. Clin Nucl Med. 2015;40:e27–33. https://doi.org/10.1097/rlu.0000000000000554.

    Article  PubMed  Google Scholar 

  32. Kamagata K, Nakatsuka T, Sakakibara R, Tsuyusaki Y, Takamura T, Sato K, et al. Diagnostic imaging of dementia with Lewy bodies by susceptibility-weighted imaging of nigrosomes versus striatal dopamine transporter single-photon emission computed tomography: a retrospective observational study. Neuroradiology. 2017;59:89–98. https://doi.org/10.1007/s00234-016-1773-z.

    Article  PubMed  Google Scholar 

  33. Shimizu S, Namioka N, Hirose D, Kanetaka H, Hirao K, Hatanaka H, et al. Comparison of diagnostic utility of semi-quantitative analysis for DAT-SPECT for distinguishing DLB from AD. J Neurol Sci. 2017;377:50–4. https://doi.org/10.1016/j.jns.2017.03.040.

    Article  PubMed  Google Scholar 

  34. Nicastro N, Garibotto V, Allali G, Assal F, Burkhard PR. Added value of combined semi-quantitative and visual [123I]FP-CIT SPECT analyses for the diagnosis of dementia with Lewy bodies. Clin Nucl Med. 2017;42:e96–102. https://doi.org/10.1097/rlu.0000000000001477.

    Article  PubMed  Google Scholar 

  35. Hanyu H, Shimizu S, Hirao K, Sakurai H, Iwamoto T, Chikamori T, et al. The role of 123I-metaiodobenzylguanidine myocardial scintigraphy in the diagnosis of Lewy body disease in patients with dementia in a memory clinic. Dement Geriatr Cogn Disord. 2006;22:379–84. https://doi.org/10.1159/000095641.

    Article  PubMed  Google Scholar 

  36. Estorch M, Camacho V, Paredes P, Rivera E, Rodriguez-Revuelto A, Flotats A, et al. Cardiac (123)I-metaiodobenzylguanidine imaging allows early identification of dementia with Lewy bodies during life. Eur J Nucl Med Mol Imaging. 2008;35:1636–41. https://doi.org/10.1007/s00259-008-0828-8.

    Article  PubMed  Google Scholar 

  37. Camacho V, Estorch M, Marquie M, Domenech A, Flotats A, Fernandez A, et al. Utility of early imaging of myocardial innervation scintigraphy in the diagnosis of Lewy Body Dementia. Rev Esp Med Nucl Imagen Mol. 2013;32:77–80. https://doi.org/10.1016/j.remn.2012.03.012.

    Article  CAS  PubMed  Google Scholar 

  38. Slaets S, Van Acker F, Versijpt J, Hauth L, Goeman J, Martin JJ, et al. Diagnostic value of MIBG cardiac scintigraphy for differential dementia diagnosis. Int J Geriatr Psychiatry. 2015;30:864–9. https://doi.org/10.1002/gps.4229.

    Article  PubMed  Google Scholar 

  39. Sakamoto F, Shiraishi S, Tsuda N, Hashimoto M, Tomiguchi S, Ikeda M, et al. Diagnosis of dementia with Lewy bodies: can 123I-IMP and 123I-MIBG scintigraphy yield new core features? Br J Radiol. 2017;90:20160156. https://doi.org/10.1259/bjr.20160156.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Manabe Y, Inui Y, Toyama H, Kosaka K. 123I-metaiodobenzylguanidine myocardial scintigraphy with early images alone is useful for the differential diagnosis of dementia with Lewy bodies. Psychiatry Res. 2017;261:75–9. https://doi.org/10.1016/j.pscychresns.2016.12.011.

    Article  Google Scholar 

  41. Jindahra P, Vejjajiva A, Witoonpanich R, Sirisriro R, Sritara C, Pulkes T. Differentiation of dementia with Lewy bodies, Alzheimer’s disease and vascular dementia by cardiac 131I-meta-iodobenzylguanidine (MIBG) uptake (preliminary report). J Med Assoc Thail. 2004;87:1176–81.

    Google Scholar 

  42. Watanabe H, Ieda T, Katayama T, Takeda A, Aiba I, Doyu M, et al. Cardiac (123)I-meta-iodobenzylguanidine (MIBG) uptake in dementia with Lewy bodies: comparison with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2001;70:781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oide T, Tokuda T, Momose M, Oguchi K, Nakamura A, Ohara S, et al. Usefulness of [123I] metaiodobenzylguanidine ([123I]MIBG) myocardial scintigraphy in differentiating between Alzheimer’s disease and dementia with Lewy bodies. Intern Med. 2003;42:686–90.

    Article  PubMed  Google Scholar 

  44. Yoshita M, Taki J, Yokoyama K, Noguchi-Shinohara M, Matsumoto Y, Nakajima K, et al. Value of 123I-MIBG radioactivity in the differential diagnosis of DLB from AD. Neurology. 2006;66:1850–4. https://doi.org/10.1212/01.wnl.0000219640.59984.a7.

    Article  CAS  PubMed  Google Scholar 

  45. Wada-Isoe K, Kitayama M, Nakaso K, Nakashima K. Diagnostic markers for diagnosing dementia with Lewy bodies: CSF and MIBG cardiac scintigraphy study. J Neurol Sci. 2007;260:33–7. https://doi.org/10.1016/j.jns.2007.03.016.

    Article  PubMed  Google Scholar 

  46. Noguchi-Shinohara M, Tokuda T, Yoshita M, Kasai T, Ono K, Nakagawa M, et al. CSF alpha-synuclein levels in dementia with Lewy bodies and Alzheimer’s disease. Brain Res. 2009;1251:1–6. https://doi.org/10.1016/j.brainres.2008.11.055.

    Article  CAS  PubMed  Google Scholar 

  47. Inui Y, Toyama H, Manabe Y, Sarai M, Iwata N. Comparison of (123)I-MIBG myocardial scintigraphy, brain perfusion SPECT, and voxel-based MRI morphometry for distinguishing between dementia with Lewy bodies and Alzheimer’s disease. Ann Nucl Med. 2014;28:796–804. https://doi.org/10.1007/s12149-014-0873-2.

    Article  CAS  PubMed  Google Scholar 

  48. Abbasi M, Ghalandari N, Farzanefar S, Aghamollaii V, Ahmadi M, Ganji M, et al. Potential diagnostic value of (131)I-MIBG myocardial scintigraphy in discrimination between Alzheimer disease and dementia with Lewy bodies. Clin Neurol Neurosurg. 2017;163:163–6. https://doi.org/10.1016/j.clineuro.2017.10.024.

    Article  PubMed  Google Scholar 

  49. Barrou Z, Boddaert J, Faucounau V, Habert MO, Greffard S, Dieudonne B, et al. Utility of 123I-FP-CIT SPECT for dementia diagnoses and therapeutic strategies in elderly patients. J Nutr Health Aging. 2014;18:50–3. https://doi.org/10.1007/s12603-013-0346-7.

    Article  CAS  PubMed  Google Scholar 

  50. Jung Y, Jordan LG 3rd, Lowe VJ, Kantarci K, Parisi JE, Dickson DW, et al. Clinicopathological and (123)I-FP-CIT SPECT correlations in patients with dementia. Ann Clin Transl Neurol. 2018;5:376–81. https://doi.org/10.1002/acn3.521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walker Z, Jaros E, Walker RW, Lee L, Costa DC, Livingston G, et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry. 2007;78:1176–81. https://doi.org/10.1136/jnnp.2006.110122.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Treglia G, Cason E, Stefanelli A, Cocciolillo F, Di Giuda D, Fagioli G, et al. MIBG scintigraphy in differential diagnosis of parkinsonism: a meta-analysis. Clin Auton Res. 2012;22:43–55. https://doi.org/10.1007/s10286-011-0135-5.

    Article  PubMed  Google Scholar 

  53. Papathanasiou ND, Boutsiadis A, Dickson J, Bomanji JB. Diagnostic accuracy of (1)(2)(3)I-FP-CIT (DaTSCAN) in dementia with Lewy bodies: a meta-analysis of published studies. Parkinsonism Relat Disord. 2012;18:225–9. https://doi.org/10.1016/j.parkreldis.2011.09.015.

    Article  PubMed  Google Scholar 

  54. Trikalinos TA, Balion CM. Chapter 9: options for summarizing medical test performance in the absence of a “gold standard”. J Gen Intern Med. 2012;27(Suppl 1):S67–75. https://doi.org/10.1007/s11606-012-2031-7.

    Article  PubMed  Google Scholar 

  55. Montine TJ, Koroshetz WJ, Babcock D, Dickson DW, Galpern WR, Glymour MM, et al. Recommendations of the Alzheimer’s disease-related dementias conference. Neurology. 2014;83:851–60. https://doi.org/10.1212/wnl.0000000000000733.

    Article  PubMed  PubMed Central  Google Scholar 

  56. King AE, Mintz J, Royall DR. Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov Disord: official journal of the Movement Disorder Society. 2011;26:1218–24. https://doi.org/10.1002/mds.23659.

    Article  Google Scholar 

  57. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.

    Article  CAS  PubMed  Google Scholar 

  59. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–60.

    Article  CAS  PubMed  Google Scholar 

  60. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–44.

    Article  CAS  PubMed  Google Scholar 

  61. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:1985–92.

    Article  CAS  PubMed  Google Scholar 

  62. Association AP. Diagnostic and statistical manual of mental disorders. 4th ed. Washington: American Psychiatric Association; 1994.

    Google Scholar 

  63. Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol. 1993;50:140–8.

    Article  CAS  PubMed  Google Scholar 

  64. McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis. 2006;9:417–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Koji Kamagata, Yuta Manabe, Alan Thomas, and Giorgio Treglia for providing additional data from their original studies; Drs. Nandini Dendukuri and Ian Schiller for providing their original codes in R to depict adjusted summary receiver operating characteristic curves and credible regions for adjusted summary sensitivity and specificity, which we modified and ported to Stata; and Ms. Naomi Sawabe for assisting with the literature search and data extraction.

Contributors

TN and TT had full access to the data set of this study and take responsibility for the integrity of data and the accuracy of data analysis. Conception and design: TN, KI, and TT. Literature search: TN and TT. Article screening: TN and TT. Eligibility decision and data collection: TN, KI, and TT. Statistical analysis: TT. Interpretation of data: TN, KI, and TT. Draft of manuscript: TN and TT. Critical revision: TN, KI, and TT. Supervision: KI. All authors made substantial contributions to the intellectual content of the paper and gave final approval for the final version of the manuscript.

Funding

This study was funded by The Ministry of Education, Culture, Sports, Science, and Technology, Japan (grant numbers: 23591760 and 26460755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhiko Terasawa.

Ethics declarations

The funding sources had no role in the design or conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Conflict of interest

Author TN declares that he has no conflict of interest. Author KI has received honoraria for lecture fees from Nihon Medi-Physics Co., Ltd. (Tokyo, Japan). Author TT declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Electronic supplementary material

ESM 1

(DOC 71 kb)

ESM 2

(DOCX 612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nihashi, T., Ito, K. & Terasawa, T. Diagnostic accuracy of DAT-SPECT and MIBG scintigraphy for dementia with Lewy bodies: an updated systematic review and Bayesian latent class model meta-analysis. Eur J Nucl Med Mol Imaging 47, 1984–1997 (2020). https://doi.org/10.1007/s00259-019-04480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04480-8

Keywords

Navigation