Skip to main content
Log in

Anatomical localization of radiocolloid tracer deposition affects outcome of sentinel node procedures in prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Diagnostic imaging modalities have moderate sensitivity for the identification of lymph node (LN) metastases in prostate cancer (PCa) patients. Mapping the lymphatic drainage from the prostate can help to identify the LNs directly draining from the tumour (sentinel nodes (SNs)); the LNs stated to have the highest chance of containing metastatic cancer cells. Although the lymphatic drainage may differ between segments within the prostate, the location of the primary tumour is not routinely taken into account during peripheral zone-aimed tracer administration. This study evaluates whether linking the SN procedure to the primary cancer deposits increases the identification accuracy of lymphatic metastases.

Methods

Sixty-seven PCa patients, scheduled for robot-assisted laparoscopic prostatectomy (RALP) and extended lymph node dissection (ePLND) with subsequent SN biopsy, were included in this retrospective study. After injection of the hybrid tracer ICG-99mTc-nanocolloid in the prostate, SN mapping was performed based on lymphoscintigraphy and SPECT/CT. SNs were resected using a combination of radio- and fluorescence guidance. Pathology was used to determine the primary tumour location and metastatic spread. Fluorescence imaging of paraffin-embedded prostate tissue was used to determine the location of the tracer deposits in the prostate. This deposition was related to the primary tumour location, the lymphatic drainage pattern of the injected tracer, and the metastatic spread.

Results

In total 265 radioactive LNs (211 SNs and 54 higher-echelon nodes in 64 patients; 4.3 LNs per patient; IQR: 2–6) were identified. In three patients (4%) preoperative imaging did not allow identification of SNs. Tumour-positive SN visualization within the pelvis was shown to be influenced by intraprostatic location of tracer administration. This could be concluded from (1) a clear correlation between lymphatic drainage to the right or left side of the body and tracer deposition on the right or left side of the prostate, (2) visualization of a higher number of LNs after dorsal tracer deposition compared with ventral tracer deposition, (3) different drainage patterns observed for tracer deposition into the base or apex of the prostate, and (4) the indication that intratumoural tracer deposition increases the chance of visualizing nodal metastases compared with extratumoural tracer deposition.

Conclusions

The correlation between the location of the tracer deposits, the location of the primary tumour, and the visualization of the (tumour-positive) SNs indicated that placement of tracer deposits is of influence on the visualized lymphatic drainage pattern. This suggests that tracer injection near or into the primary tumour site is beneficial for the identification of metastatic spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Leeuwen PJ, Emmett L, Ho B, Delprado W, Ting F, Nguyen Q, et al. Prospective evaluation of 68gallium-prostate-specific membrane antigen positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer. BJU Int. 2017;119(2):209–15.

    Article  PubMed  Google Scholar 

  2. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G, et al. Diagnostic efficacy of (68)gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436–43.

    Article  PubMed  Google Scholar 

  3. Kim SJ, Lee SW, Ha HK. Diagnostic performance of radiolabeled prostate-specific membrane antigen positron emission tomography/computed tomography for primary lymph node staging in newly diagnosed intermediate to high-risk prostate cancer patients: a systematic review and meta-analysis. Urol Int. 2019;102(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  4. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71:618–29.

    Article  PubMed  Google Scholar 

  5. Briganti A, Chun FK, Salonia A, Suardi N, Gallina A, Da Pozzo LF, et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol. 2006;50(5):1006–13.

    Article  PubMed  Google Scholar 

  6. van Leeuwen FWB, Winter A, van Der Poel HG, Eiber M, Suardi N, Graefen M, et al. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat Rev Urol. 2019;16(3):159–71.

    Article  PubMed  Google Scholar 

  7. Weckermann D, Dorn R, Trefz M, Wagner T, Wawroschek F, Harzmann R. Sentinel lymph node dissection for prostate cancer: experience with more than 1,000 patients. J Urol. 2007;177(3):916–20.

    Article  PubMed  Google Scholar 

  8. Weckermann D, Dorn R, Holl G, Wagner T, Harzmann R. Limitations of radioguided surgery in high-risk prostate cancer. Eur Urol. 2007;51(6):1549–56 discussion 56-8.

    Article  PubMed  Google Scholar 

  9. Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol. 2013;63(3):450–8.

    Article  PubMed  Google Scholar 

  10. Roscigno M, Nicolai M, La Croce G, Pellucchi F, Scarcello M, Sacca A, et al. Difference in frequency and distribution of nodal metastases between intermediate and high risk prostate cancer patients: results of a superextended pelvic lymph node dissection. Front Surg. 2018;5:52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mattei A, Fuechsel FG, Bhatta Dhar N, Warncke SH, Thalmann GN, Krause T, et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur Urol. 2008;53(1):118–25.

    Article  PubMed  Google Scholar 

  12. van den Berg NS, Valdes-Olmos RA, van der Poel HG, van Leeuwen FW. Sentinel lymph node biopsy for prostate cancer: a hybrid approach. J Nucl Med. 2013;54(4):493–6.

    Article  PubMed  Google Scholar 

  13. Winter A, Woenkhaus J, Wawroschek F. A novel method for intraoperative sentinel lymph node detection in prostate cancer patients using superparamagnetic iron oxide nanoparticles and a handheld magnetometer: the initial clinical experience. Ann Surg Oncol. 2014;21(13):4390–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol. 2014;65(6):1162–8.

    Article  PubMed  Google Scholar 

  15. Jeschke S, Lusuardi L, Myatt A, Hruby S, Pirich C, Janetschek G. Visualisation of the lymph node pathway in real time by laparoscopic radioisotope- and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. Urology. 2012;80(5):1080–6.

    Article  PubMed  Google Scholar 

  16. van den Berg NS, Buckle T, KleinJan GH, van der Poel HG, van Leeuwen FW. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a first step towards a fluorescence-based anatomic roadmap. Eur Urol. 2016;72(1):110–7.

    Article  PubMed  Google Scholar 

  17. KleinJan GH, van Werkhoven E, van den Berg NS, Karakullukcu MB, Zijlmans H, van der Hage JA, et al. The best of both worlds: a hybrid approach for optimal pre- and intraoperative identification of sentinel lymph nodes. Eur J Nucl Med Mol Imaging. 2018;45(11):1915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van der Poel HG, Buckle T, Brouwer OR, Valdes Olmos RA, van Leeuwen FW. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011;60(4):826–33.

    Article  PubMed  Google Scholar 

  19. Brouwer OR, van den Berg NS, Matheron HM, van der Poel HG, van Rhijn BW, Bex A, et al. A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye. Eur Urol. 2014;65(3):600–9.

    Article  CAS  PubMed  Google Scholar 

  20. Buckle T, Brouwer OR, Valdes Olmos RA, van der Poel HG, van Leeuwen FW. Relationship between intraprostatic tracer deposits and sentinel lymph node mapping in prostate cancer patients. J Nucl Med. 2012;53(7):1026–33.

    Article  PubMed  Google Scholar 

  21. Pano B, Sebastia C, Bunesch L, Mestres J, Salvador R, Macias NG, et al. Pathways of lymphatic spread in male urogenital pelvic malignancies. Radiographics. 2011;31(1):135–60.

    Article  PubMed  Google Scholar 

  22. KleinJan GH, van den Berg NS, Brouwer OR, de Jong J, Acar C, Wit EM, et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014;66:991–8.

    Article  PubMed  Google Scholar 

  23. Nieweg OE, Tanis PJ, Kroon BB. The definition of a sentinel node. Ann Surg Oncol. 2001;8(6):538–41.

    Article  CAS  PubMed  Google Scholar 

  24. Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  25. Rettenbacher L, Koller J, Kassmann H, Holzmannhofer J, Rettenbacher T, Galvan G. Reproducibility of lymphoscintigraphy in cutaneous melanoma: can we accurately detect the sentinel lymph node by expanding the tracer injection distance from the tumor site? J Nucl Med. 2001;42(3):424–9.

    CAS  PubMed  Google Scholar 

  26. Tartaglione G, Stoeckli SJ, de Bree R, Schilling C, Flach GB, Bakholdt V, et al. Sentinel node in oral cancer: the nuclear medicine aspects. A survey from the sentinel European node trial. Clin Nucl Med. 2016;41(7):534–42.

    Article  PubMed  Google Scholar 

  27. Weber JJ, Wong JH. Periareolar or peritumoral injection of isosulfan blue and the effect on the number of sentinel lymph nodes examined. Am Surg. 2017;83(1):98–102.

    Article  PubMed  Google Scholar 

  28. Cong BB, Cao XS, Qiu PF, Liu YB, Zhao T, Chen P, et al. Validation study of the modified injection technique for internal mammary sentinel lymph node biopsy in breast cancer. Onco Targets Ther. 2015;8:2705–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lutzen U, Zuhayra M, Marx M, Zhao Y, Knupfer S, Colberg C, et al. Value and efficacy of sentinel lymph node diagnostics in patients with penile carcinoma with nonpalpable inguinal lymph nodes: five-year follow-up. Clin Nucl Med. 2016;41(8):621–5.

    Article  PubMed  Google Scholar 

  30. Blok JM, Kerst JM, Vegt E, Brouwer OR, Meijer RP, Bosch J, et al. Sentinel node biopsy in clinical stage I testicular cancer enables early detection of occult metastatic disease. BJU Int. 2018. https://doi.org/10.1111/bju.14618.

  31. van der Poel HG, Meershoek P, Grivas N, KleinJan G, van Leeuwen FW, Horenblas S. Sentinel node biopsy and lymphatic mapping in penile and prostate cancer. Urologe A. 2017;56(1):13–7.

    Article  PubMed  Google Scholar 

  32. Brouwer OR, Vermeeren L, van der Ploeg IM, Valdes Olmos RA, Loo CE, Pereira-Bouda LM, et al. Lymphoscintigraphy and SPECT/CT in multicentric and multifocal breast cancer: does each tumour have a separate drainage pattern? Results of a Dutch multicentre study (MULTISENT). Eur J Nucl Med Mol Imaging. 2012;39(7):1137–43.

    Article  CAS  PubMed  Google Scholar 

  33. Lovf M, Zhao S, Axcrona U, Johannessen B, Bakken AC, Carm KT, et al. Multifocal primary prostate cancer exhibits high degree of genomic heterogeneity. Eur Urol. 2019;75(3):498–505.

    Article  PubMed  Google Scholar 

  34. McNeal JE. Anatomy of the prostate and morphogenesis of BPH. Prog Clin Biol Res. 1984;145:27–53.

    CAS  PubMed  Google Scholar 

  35. Brossner C, Ringhofer H, Hernady T, Kuber W, Madersbacher S, Pycha A. Lymphatic drainage of prostatic transition and peripheral zones visualized on a three-dimensional workstation. Urology. 2001;57(2):389–93.

    Article  CAS  PubMed  Google Scholar 

  36. Burggraaf J, Kamerling IM, Gordon PB, Schrier L, de Kam ML, Kales AJ, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med. 2015;21(8):955–61.

    Article  CAS  PubMed  Google Scholar 

  37. Dobosz M, Haupt U, Scheuer W. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule. MAbs. 2017;9(1):140–53.

    Article  CAS  PubMed  Google Scholar 

  38. Buckle T, Kuil J, van den Berg NS, Bunschoten A, Lamb HJ, Yuan H, et al. Use of a single hybrid imaging agent for integration of target validation with in vivo and ex vivo imaging of mouse tumor lesions resembling human DCIS. PLoS One. 2013;8(1):e48324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schottelius M, Wurzer A, Wissmiller K, Beck R, Koch M, Gorpas D, et al. Synthesis and preclinical characterization of the PSMA-targeted hybrid tracer PSMA-I&F for nuclear and fluorescence imaging of prostate cancer. J Nucl Med. 2019;60(1):71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Oosterom MN, van der Poel HG, Navab N, van de Velde CJH, van Leeuwen FWB. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions. Curr Opin Urol. 2018;28(2):205–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all participating patients, the entire surgical staff, and the departments of pathology and nuclear medicine of the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital for their contribution. The authors would also like to thank Nynke van den Berg for her help to archive the findings in the database.

Funding

This research was supported by an NWO-STW-VIDI grant (STW BGT 11271) and a NWO-TTW-VICI grant (TTW 16141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. van der Poel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the local ethics committee of The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (N09IGF; NL28143.031.09) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology – Genitourinary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Korne, C.M., Wit, E.M., de Jong, J. et al. Anatomical localization of radiocolloid tracer deposition affects outcome of sentinel node procedures in prostate cancer. Eur J Nucl Med Mol Imaging 46, 2558–2568 (2019). https://doi.org/10.1007/s00259-019-04443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04443-z

Keywords

Navigation