Skip to main content
Log in

Nigrostriatal dopamine transporter availability, and its metabolic and clinical correlates in Parkinson’s disease patients with impulse control disorders

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Previous studies in patients with Parkinson’s disease (PD) and impulse control disorders (ICDs) have produced heterogeneous results regarding striatal dopamine transporter (DaT) binding and activity in the mesocorticolimbic network. Our aim here was to study the relationship between striatal DaT availability and cortical metabolism, as well as motor, behavioural and cognitive features of PD patients with ICD.

Methods

In a group of PD patients with ICD (PD-ICD, n = 16) and 16 matched PD patients without ICD (PD-noICD, n = 16), DaT single-photon emission computed tomography (SPECT) imaging (DaTSCAN) was used to study DaT availability in predefined striatal volumes of interest (VOIs): putamen, caudate nucleus and ventral striatum (VS). In addition, the specific association of striatal DaT binding with cortical limbic and associative metabolic activity was evaluated by 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in PD-ICD patients and investigated using statistical parametric mapping (SPM8). Finally, associations between DaT availability and motor, behavioural and cognitive features were assessed.

Results

PD-ICD patients had a significantly lower DaT density in the VS than PD-noICD patients, which was inversely associated with ICD severity. Lower DaT availability in the VS was associated with lower FDG uptake in several cortical areas belonging to the limbic and associative circuits, and in other regions involved in reward and inhibition processes (p < 0.0001 uncorrected; k > 50 voxels). No significant results were observed using a higher conservative threshold (p < 0.05; FDR corrected). PD-ICD patients also displayed impairment in interference and attentional Stroop Task execution, and more anxiety, all associated with reduced DaT availability in the VS and caudate nucleus.

Conclusions

ICDs in PD patients are related to reduced DaT binding in the VS, which accounts for dysfunction in a complex cortico-subcortical network that involves areas of the mesolimbic and mesocortical systems, being associated with reward evaluation, salience attribution and inhibitory control processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20:2369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience. 2014;282:248–57.

    Article  CAS  PubMed  Google Scholar 

  3. Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol. 1995;38:589–98.

    Article  CAS  PubMed  Google Scholar 

  4. Santangelo G, Vitale C, Picillo M, Cuoco S, Moccia M, Pezzella D, et al. Apathy and striatal dopamine transporter levels in de-novo, untreated Parkinson’s disease patients. Parkinsonism Relat Disord. 2015;21:489–93.

    Article  PubMed  Google Scholar 

  5. Thobois S, Prange S, Sgambato-Faure V, Tremblay L, Broussolle E. Imaging the etiology of apathy, anxiety, and depression in Parkinson’s disease: implication for treatment. Curr Neurol Neurosci Rep. 2017;17:76.

    Article  PubMed  Google Scholar 

  6. Son HJ, Jeong YJ, Yoon HJ, Kim JW, Choi GE, Park JH, et al.Parkinson disease-related cortical and striatal cognitive patterns in dual time F-18 FP CIT: evidence for neural correlates between the caudate and the frontal lobe. Q J Nucl Med Mol Imaging. 2017. https://doi.org/10.23736/S1824-4785.17.02976-4.

  7. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95.

    Article  PubMed  Google Scholar 

  8. Ray NJ, Strafella AP. Imaging impulse control disorders in Parkinson’s disease and their relationship to addiction. J Neural Transm (Vienna). 2013;120:659–64.

    Article  Google Scholar 

  9. Cilia R, Ko JH, Cho SS, van Eimeren T, Marotta G, Pellecchia G, et al. Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiol Dis. 2010;39:98–104.

    Article  CAS  PubMed  Google Scholar 

  10. Joutsa J, Martikainen K, Niemelä S, Johansson J, Forsback S, Rinne JO, et al. Increased medial orbitofrontal [18F]fluorodopa uptake in parkinsonian impulse control disorders. Mov Disord. 2012;27:778–82.

    Article  CAS  PubMed  Google Scholar 

  11. Vriend C, Nordbeck AH, Booij J, van der Werf YD, Pattij T, Voorn P, et al. Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease: reduced DaT BR predates ICD in PD. Mov Disord. 2014;29:904–11.

    Article  CAS  PubMed  Google Scholar 

  12. Cilia R, Siri C, Marotta G, Isaias IU, De Gaspari D, Canesi M, et al. Functional abnormalities underlying pathological gambling in Parkinson disease. Arch Neurol. 2008;65:1604–11.

    Article  PubMed  Google Scholar 

  13. van Eimeren T, Pellecchia G, Cilia R, Ballanger B, Steeves TDL, Houle S, et al. Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology. 2010;75:1711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voon V, Gao J, Brezing C, Symmonds M, Ekanayake V, Fernandez H, et al. Dopamine agonists and risk: impulse control disorders in Parkinson’s; disease. Brain. 2011;134:1438–46.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Djamshidian A, O’Sullivan SS, Lees A, Averbeck BB. Stroop test performance in impulsive and non impulsive patients with Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:212–4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weintraub D, Hoops S, Shea JA, Lyons KE, Pahwa R, Driver-Dunckley ED, et al. Validation of the questionnaire for impulsive-compulsive disorders in Parkinson’s disease. Mov Disord. 2009;24:1461–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A. Questionnaire for impulsive-compulsive disorders in Parkinson’s disease-rating scale. Mov Disord. 2012;27:242–7.

    Article  PubMed  Google Scholar 

  18. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707 quiz 1837.

    Article  PubMed  Google Scholar 

  19. Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society task force guidelines. Mov Disord. 2012;27:349–56.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25:2649–53.

    Article  PubMed  Google Scholar 

  21. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50:7–15.

    Article  CAS  PubMed  Google Scholar 

  22. Comtat C, Kinahan PE, Fessler JA, Beyer T, Townsend DW, Defrise M, et al. Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol. 2002;47:1–20.

    Article  PubMed  Google Scholar 

  23. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19.

    Article  PubMed  Google Scholar 

  24. Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. NeuroImage. 2011;54:264–77.

    Article  CAS  PubMed  Google Scholar 

  25. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.

    Article  PubMed  Google Scholar 

  26. Scherfler C, Nocker M. Dopamine transporter SPECT: how to remove subjectivity? Mov Disord. 2009;24(Suppl 2):S721–4.

    Article  PubMed  Google Scholar 

  27. Scherfler C, Seppi K, Donnemiller E, Goebel G, Brenneis C, Virgolini I, et al. Voxel-wise analysis of [123I]beta-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain J Neurol. 2005;128:1605–12.

    Article  Google Scholar 

  28. Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1767–77.

    Article  PubMed  Google Scholar 

  29. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52:848–55.

    Article  CAS  PubMed  Google Scholar 

  30. Minoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr. 1995;19:541–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10:120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pirker W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord. 2003;18(Suppl 7):S43–51.

    Article  PubMed  Google Scholar 

  33. Varrone A, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Booij J, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2013;40:213–27.

    Article  CAS  PubMed  Google Scholar 

  34. Voon V, Rizos A, Chakravartty R, Mulholland N, Robinson S, Howell NA, et al. Impulse control disorders in Parkinson’s disease: decreased striatal dopamine transporter levels. J Neurol Neurosurg Psychiatry. 2014;85:148–52.

    Article  PubMed  Google Scholar 

  35. Smith KM, Xie SX, Weintraub D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. J Neurol Neurosurg Psychiatry. 2016;87:864–70.

    Article  PubMed  Google Scholar 

  36. Premi E, Pilotto A, Garibotto V, Bigni B, Turrone R, Alberici A, et al. Impulse control disorder in PD: a lateralized monoaminergic frontostriatal disconnection syndrome? Parkinsonism Relat Disord. 2016;30:62–6.

    Article  CAS  PubMed  Google Scholar 

  37. Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories - indications for novel treatments of addiction. Eur J Neurosci. 2014;40:2163–82.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reber J, Feinstein JS, O’Doherty JP, Liljeholm M, Adolphs R, Tranel D. Selective impairment of goal-directed decision-making following lesions to the human ventromedial prefrontal cortex. Brain. 2017;140:1743–56.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Verger A, Klesse E, Chawki MB, Witjas T, Azulay JP, Eusebio A, et al. Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Hum Brain Mapp. 2018;39(8):3178–86. https://doi.org/10.1002/hbm.24068.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Criaud M, Boulinguez P. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev. 2013;37:11–23.

    Article  PubMed  Google Scholar 

  41. Djamshidian A, Jha A, O’Sullivan SS, Silveira-Moriyama L, Jacobson C, Brown P, et al. Risk and learning in impulsive and nonimpulsive patients with Parkinson’s disease. Mov Disord. 2010;25:2203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Voon V, Reynolds B, Brezing C, Gallea C, Skaljic M, Ekanayake V, et al. Impulsive choice and response in dopamine agonist-related impulse control behaviors. Psychopharmacology. 2010;207:645–59.

    Article  CAS  PubMed  Google Scholar 

  43. Santangelo G, Raimo S, Barone P. The relationship between impulse control disorders and cognitive dysfunctions in Parkinson’s disease: a meta-analysis. Neurosci Biobehav Rev. 2017;77:129–47.

    Article  PubMed  Google Scholar 

  44. Mack J, Okai D, Brown RG, Askey-Jones S, Chaudhuri KR, Martin A, et al. The role of self-awareness and cognitive dysfunction in Parkinson’s disease with and without impulse-control disorder. J Neuropsychiatr Clin Neurosci. 2013;25:141–9.

    Article  Google Scholar 

  45. Vitale C, Santangelo G, Trojano L, Verde F, Rocco M, Grossi D, et al. Comparative neuropsychological profile of pathological gambling, hypersexuality, and compulsive eating in Parkinson’s disease. Mov Disord. 2011;26:830–6.

    Article  PubMed  Google Scholar 

  46. Bentivoglio AR, Baldonero E, Ricciardi L, De Nigris F, Daniele A. Neuropsychological features of patients with Parkinson’s disease and impulse control disorders. Neurol Sci. 2013;34:1207–13.

    Article  PubMed  Google Scholar 

  47. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488:218–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schroeder U, Kuehler A, Haslinger B, Erhard P, Fogel W, Tronnier VM, et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain J Neurol. 2002;125:1995–2004.

    Article  CAS  Google Scholar 

  49. Pineau F, Roze E, Lacomblez L, Bonnet A-M, Vidailhet M, Czernecki V, et al. Executive functioning and risk-taking behavior in Parkinson’s disease patients with impulse control disorders. J Neural Transm (Vienna). 2016;123:573–81.

    Article  Google Scholar 

  50. Biars JW, Johnson NL, Nespeca M, Busch RM, Kubu CS, Floden DP. Iowa gambling task performance in Parkinson disease patients with impulse control disorders. Arch Clin Neuropsychol. 2019;34(3):310–8. https://doi.org/10.1093/arclin/acy036.

  51. Rossi M, Gerschcovich ER, De Achaval D, Perez-Lloret S, Cerquetti D, Cammarota A, et al. Decision-making in Parkinson’s disease patients with and without pathological gambling: decision-making in PD with pathological gambling. Eur J Neurol. 2010;17:97–102.

    Article  CAS  PubMed  Google Scholar 

  52. Martini A, Dal Lago D, Edelstyn NMJ, Grange JA, Tamburin S. Impulse control disorder in Parkinson’s disease: a meta-analysis of cognitive, affective, and motivational correlates. Front Neurol. 2018;9:654.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Erro R, Pappatà S, Amboni M, Vicidomini C, Longo K, Santangelo G, et al. Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:1034–8.

    Article  PubMed  Google Scholar 

  54. Picillo M, Santangelo G, Erro R, Cozzolino A, Amboni M, Vitale C, et al. Association between dopaminergic dysfunction and anxiety in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2017;37:106–10.

    Article  PubMed  Google Scholar 

  55. Weintraub D, Newberg AB, Cary MS, Siderowf AD, Moberg PJ, Kleiner-Fisman G, et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med. 2005;46:227–32.

    CAS  PubMed  Google Scholar 

  56. Moriyama TS, Felicio AC, Chagas MHN, Tardelli VS, Ferraz HB, Tumas V, et al. Increased dopamine transporter density in Parkinson’s disease patients with social anxiety disorder. J Neurol Sci. 2011;310:53–7.

    Article  CAS  PubMed  Google Scholar 

  57. Leentjens AFG, Dujardin K, Marsh L, Martinez-Martin P, Richard IH, Starkstein SE. Anxiety and motor fluctuations in Parkinson’s disease: a cross-sectional observational study. Parkinsonism Relat Disord. 2012;18:1084–8.

    Article  CAS  PubMed  Google Scholar 

  58. Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain J Neurol. 1996;119(Pt 2):585–91.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Carlos III Institute of Health (PI11/02109) and by the ERA-Neuron program (PIM2010ERN-00733). In addition, Dr. Navalpotro-Gomez held a Rio Hortega 2016 grant (CM16/00033) from the Carlos III Institute of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.C.R.-O. and I.N.-G. designed and organized the study; I.N.-G, R.D.-A. and M.C.R.-O. collected the data; M.C.R.-O. supervised the study; A.B.-P., F.M.-D. and I.N.-G. performed the statistical analysis; I.N.-G and M.C.R.-O. interpreted the results of the analysis with substantial contribution from all the authors; I.N.-G. and F.M.-D. drafted the manuscript, to which all the authors contributed with revisions.

Corresponding author

Correspondence to Maria C. Rodriguez-Oroz.

Ethics declarations

Conflict of interest

I.N.-G. received honoraria for travel and accommodation to attend scientific meetings from Zambon. R.D.-A., F.M.-D., H.J.-U, B.G. and A.Q.-V. have no disclosures to declare. A.M.-B received honoraria for travel and accommodation from Zambon and Bial. M.C.R.-O. received honoraria for lectures, travel and accommodation to attend scientific meetings from Abbvie, Zambon, Bial and Boston Scientific, and she received financial support for her research from national and local government funding agencies in Spain (Institute of Health Carlos III, Basque Country Local Government, and CIBERNED). M.D.-A. received honoraria for travel and accommodation to attend scientific meetings from UCB and Zambon. None of these bodies influenced the content of the manuscript or the decision to publish in any way.

Ethical approval

All the procedures carried out involving human participants were in accordance with the ethical standards of the Gipuzkoa Clinical Research Ethics Committee, and with the principles of the 1964 Declaration of Helsinki and its later amendments, or comparable ethical standards.

Informed consent

Informed consent was obtained from all the participants prior to their inclusion in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Electronic supplementary material

Supplementary Fig. 1

Location of the custom-defined caudate nucleus (green), putamen (red) and VS (blue), and the posterior reference (yellow). VOIs drawn in the stereotaxic space on coronal (A) and axial (B) sections of an MRI scan. (PNG 456 kb)

High-resolution image (TIF 4161 kb)

Supplementary Table 1

Characteristics of the ICDs in PD patients. (DOCX 33 kb) (DOCX 33 kb)

Supplementary Table 2

Correlation between DaT density and regional FDG uptake in PD-ICD patients (anatomical locations, spatial extents of significant clusters, Talairach coordinates and maximal z-scores). (DOCX 14 kb)

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navalpotro-Gomez, I., Dacosta-Aguayo, R., Molinet-Dronda, F. et al. Nigrostriatal dopamine transporter availability, and its metabolic and clinical correlates in Parkinson’s disease patients with impulse control disorders. Eur J Nucl Med Mol Imaging 46, 2065–2076 (2019). https://doi.org/10.1007/s00259-019-04396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04396-3

Keywords

Navigation