Advertisement

Brain metabolic patterns in patients with suspected non-Alzheimer’s pathophysiology (SNAP) and Alzheimer’s disease (AD): is [18F] FDG a specific biomarker in these patients?

  • Agostino ChiaravallotiEmail author
  • Gaetano Barbagallo
  • Alessandro Martorana
  • Anna Elisa Castellano
  • Francesco Ursini
  • Orazio Schillaci
Original Article
  • 295 Downloads
Part of the following topical collections:
  1. Neurology

Abstract

Purpose

The present study was conducted to compare the pattern of brain [18F] FDG uptake in suspected non-Alzheimer’s pathophysiology (SNAP), AD, and healthy controls using 2-deoxy-2-[18F]fluoroglucose ([18F] FDG) positron emission tomography imaging. Cerebrospinal fluid (CSF) biomarkers amyloid-β1-42 peptide (Aβ1-42) and tau were used in order to differentiate AD from SNAP.

Methods

The study included 43 newly diagnosed AD patients (female = 23; male = 20) according to the NINCDS-ADRDA criteria, 15 SNAP patients (female = 12; male =3), and a group of 34 healthy subjects that served as the control group (CG), who were found to be normal at neurological evaluation (male = 20; female = 14). A battery of neuropsychological tests was administrated in AD and SNAP subjects; cerebrospinal fluid assay was conducted in both AD and SNAP as well. Brain PET/CT acquisition was started 30 ± 5 min after [18F] FDG injection in all subjects. SPM12 [statistical parametric mapping] implemented in MATLAB 2018a was used for the analysis of PET scans in this study.

Results

As compared to SNAP, AD subjects showed significant hypometabolism in a wide cortical area involving the right frontal, parietal, and temporal lobes. As compared to CG, AD subjects showed a significant reduction in [18F] FDG uptake in the parietal, limbic, and frontal cortex, while a more limited reduction in [18F] FDG uptake in the same areas was found when comparing SNAP to CG.

Conclusions

SNAP subjects show milder impairment of brain [18F] FDG uptake as compared to AD. The partial overlap of the metabolic pattern between SNAP and AD limits the use of [18F] FDG PET/CT in effectively discriminating these clinical entities.

Keywords

[18F] FDG Alzheimer, SNAP PET/CT Biomarkers 

Abbreviations

[18F] FDG

2-Deoxy-2-[18F]fluoroglucose

PET

Positron emission tomography

CT

Computed tomography

CSF

Cerebrospinal fluid

T-tau

Total tau

P-tau

Phosphorylated tau

Notes

Acknowledgments

The authors wish to thank Tiziana Martino (IRCCS Neuromed) for data collection. This work was funded in part by the European Commission Horizon 2020 programme, grant 689209: PICASO, A Personalised Integrated Care Approach for Service Organisations and Care Models for Patients with Multi-Morbidity and Chronic Conditions.

Compliance with ethical standards

Conflict of interest

The authors report no financial disclosures/funding or conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Jack CR Jr, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71:765–75.  https://doi.org/10.1002/ana.22628.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Burnham SC, Bourgeat P, Dore V, Savage G, Brown B, Laws S, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 2016;15:1044–53.  https://doi.org/10.1016/s1474-4422(16)30125-9.CrossRefPubMedGoogle Scholar
  3. 3.
    Filippi L, Chiaravalloti A, Bagni O, Schillaci O. (18)F-labeled radiopharmaceuticals for the molecular neuroimaging of amyloid plaques in Alzheimer’s disease. Am J Nucl Med Mol Imaging. 2018;8:268–81PubMedPubMedCentralGoogle Scholar
  4. 4.
    Villemagne VL, Rowe CC. Long night’s journey into the day: amyloid-beta imaging in Alzheimer’s disease. J Alzheimers Dis. 2013;33(Suppl 1):S349–59.  https://doi.org/10.3233/jad-2012-129034.CrossRefPubMedGoogle Scholar
  5. 5.
    Villemagne VL, Pike KE, Chetelat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aß and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.  https://doi.org/10.1002/ana.22248.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49:390–8.  https://doi.org/10.2967/jnumed.107.045385.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Duara R, Loewenstein DA, Shen Q, Barker W, Potter E, Varon D, et al. Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 2013;9:295–301.  https://doi.org/10.1016/j.jalz.2012.01.006.CrossRefPubMedGoogle Scholar
  8. 8.
    Wirth M, Villeneuve S, Haase CM, Madison CM, Oh H, Landau SM, et al. Associations between Alzheimer disease biomarkers, neurodegeneration, and cognition in cognitively normal older people. JAMA Neurol. 2013;70:1512–9.  https://doi.org/10.1001/jamaneurol.2013.4013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chiaravalloti A, Ursini F, Fiorentini A, Barbagallo G, Martorana A, Koch G, et al. Functional correlates of TSH, fT3 and fT4 in Alzheimer disease: a F-18 FDG PET/CT study. Sci Rep. 2017;7:6220.  https://doi.org/10.1038/s41598-017-06138-7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Magni E, Binetti G, Padovani A, Cappa SF, Bianchetti A, Trabucchi M. The mini-mental state examination in Alzheimer’s disease and multi-infarct dementia. Int Psychogeriatr. 1996;8:127–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci. 2002;22:443–7.  https://doi.org/10.1007/s100720200003.CrossRefPubMedGoogle Scholar
  12. 12.
    Shin MS, Park SY, Park SR, Seol SH, Kwon JS. Clinical and empirical applications of the Rey-Osterrieth complex figure test. Nat Protoc. 2006;1:892–9.  https://doi.org/10.1038/nprot.2006.115.CrossRefPubMedGoogle Scholar
  13. 13.
    Carlesimo GA, Caltagirone C, Gainotti G. The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The group for the standardization of the mental deterioration battery. Eur Neurol. 1996;36:378–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Chiaravalloti A, Barbagallo G, Ricci M, Martorana A, Ursini F, Sannino P, et al. Brain metabolic correlates of CSF tau protein in a large cohort of Alzheimer’s disease patients: a CSF and FDG PET study. Brain Res. 2018;1678:116–22.  https://doi.org/10.1016/j.brainres.2017.10.016.CrossRefPubMedGoogle Scholar
  15. 15.
    Chiaravalloti A, Castellano AE, Ricci M, Barbagallo G, Sannino P, Ursini F, et al. Coupled imaging with [(18)F]FBB and [(18)F]FDG in AD subjects show a selective association between amyloid burden and cortical dysfunction in the brain. Mol Imaging Biol. 2018;20:659–66.  https://doi.org/10.1007/s11307-018-1167-1.CrossRefPubMedGoogle Scholar
  16. 16.
    Varma AR, Snowden JS, Lloyd JJ, Talbot PR, Mann DM, Neary D. Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1999;66:184–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chiaravalloti A, Koch G, Toniolo S, Belli L, Lorenzo FD, Gaudenzi S, et al. Comparison between early-onset and late-onset Alzheimer’s disease patients with amnestic presentation: CSF and (18)F-FDG PET study. Dement Geriatr Cogn Dis Extra. 2016;6:108–19.  https://doi.org/10.1159/000441776.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vos SJ, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12:957–65.  https://doi.org/10.1016/s1474-4422(13)70194-7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Roe CM, Fagan AM, Grant EA, Hassenstab J, Moulder KL, Maue Dreyfus D, et al. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology. 2013;80:1784–91.  https://doi.org/10.1212/WNL.0b013e3182918ca6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    van Harten AC, Smits LL, Teunissen CE, Visser PJ, Koene T, Blankenstein MA, et al. Preclinical AD predicts decline in memory and executive functions in subjective complaints. Neurology. 2013;81:1409–16.  https://doi.org/10.1212/WNL.0b013e3182a8418b.CrossRefPubMedGoogle Scholar
  21. 21.
    Forlenza OV, Radanovic M, Talib LL, Aprahamian I, Diniz BS, Zetterberg H, et al. Cerebrospinal fluid biomarkers in Alzheimer’s disease: diagnostic accuracy and prediction of dementia. Alzheimers Dement (Amst). 2015;1:455–63.  https://doi.org/10.1016/j.dadm.2015.09.003.CrossRefGoogle Scholar
  22. 22.
    World Medical Association (WMA). Declaration of Helsinki. Amended by the 64th WMA General Assembly, Fortaleza, Brazil, October 2013. WMA Archives, Ferney-Voltaire, France. https://web.archive.org/web/20140101202246/ http://www.wma.net/en/30publications/10policies/b3/. Accessed 24 Oct 2018
  23. 23.
    D’Agostino E, Maes F, Vandermeulen D, Suetens P. Atlas-to-image non-rigid registration by minimization of conditional local entropy. Information processing in medical imaging : proceedings of the conference. Inf Process Med Imaging. 2007;20:320–32.Google Scholar
  24. 24.
    Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J. A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). NeuroImage. 1995;2:89–101..CrossRefPubMedGoogle Scholar
  25. 25.
    Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc. 2001;8:401–30.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bennett CM, Wolford GL, Miller MB. The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci. 2009;4:417–22.  https://doi.org/10.1093/scan/nsp053.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, et al. Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp. 1997;5:238–42.  https://doi.org/10.1002/(sici)1097-0193(1997)5:4<238::aid-hbm6>3.0.co;2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Soonawala D, Amin T, Ebmeier KP, Steele JD, Dougall NJ, Best J, et al. Statistical parametric mapping of (99m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. NeuroImage. 2002;17:1193–202.CrossRefPubMedGoogle Scholar
  29. 29.
    Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10:233–60.  https://doi.org/10.1006/nimg.1999.0459.CrossRefPubMedGoogle Scholar
  30. 30.
    Jack CR Jr, Knopman DS, Chetelat G, Dickson D, Fagan AM, Frisoni GB, et al. Suspected non-Alzheimer disease pathophysiology--concept and controversy. Nat Rev Neurol. 2016;12:117–24.  https://doi.org/10.1038/nrneurol.2015.251.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bailly M, Destrieux C, Hommet C, Mondon K, Cottier JP, Beaufils E, et al. Precuneus and cingulate cortex atrophy and Hypometabolism in patients with Alzheimer’s disease and mild cognitive impairment: MRI and (18)F-FDG PET quantitative analysis using FreeSurfer. Biomed Res Int. 2015;2015:583931.  https://doi.org/10.1155/2015/583931.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.  https://doi.org/10.1097/NEN.0b013e318232a379.CrossRefPubMedGoogle Scholar
  33. 33.
    Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology. 1999;52:1158–65.CrossRefPubMedGoogle Scholar
  34. 34.
    Booij J, Arbizu J, Darcourt J, Hesse S, Nobili F, Payoux P, et al. Appropriate use criteria for amyloid PET imaging cannot replace guidelines: on behalf of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging. 2013;40:1122–5.  https://doi.org/10.1007/s00259-013-2415-x.CrossRefPubMedGoogle Scholar
  35. 35.
    Bensaidane MR, Beauregard JM, Poulin S, Buteau FA, Guimond J, Bergeron D, et al. Clinical utility of amyloid PET imaging in the differential diagnosis of atypical dementias and its impact on caregivers. J Alzheimers Dis. 2016;52:1251–62.  https://doi.org/10.3233/jad-151180.CrossRefPubMedGoogle Scholar
  36. 36.
    Hohman TJ, Dumitrescu L, Oksol A, Wagener M, Gifford KA, Jefferson AL. APOE allele frequencies in suspected non-amyloid pathophysiology (SNAP) and the prodromal stages of Alzheimer’s disease. PLoS One. 2017;12:e0188501.  https://doi.org/10.1371/journal.pone.0188501.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schreiber S, Schreiber F, Lockhart SN, Horng A, Bejanin A, Landau SM, et al. Alzheimer disease signature neurodegeneration and APOE genotype in mild cognitive impairment with suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 2017;74:650–9.  https://doi.org/10.1001/jamaneurol.2016.5349.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mattsson N, Andreasson U, Persson S, Arai H, Batish SD, Bernardini S, et al. The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement. 2011;7:386–95.e6.  https://doi.org/10.1016/j.jalz.2011.05.2243.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedicine and PreventionUniversity Tor VergataRomeItaly
  2. 2.IRCCS NeuromedPozzilliItaly
  3. 3.Institute of NeurologyUniversity Magna Graecia of CatanzaroCatanzaroItaly
  4. 4.UOSD Centro Demenze, Department of Systems MedicineUniversity of Roma Tor VergataRomeItaly
  5. 5.Department of Medical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations