Skip to main content

Advertisement

Log in

Local and whole-body staging in patients with primary breast cancer: a comparison of one-step to two-step staging utilizing 18F-FDG-PET/MRI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to compare the diagnostic value of a one-step to a two-step staging algorithm utilizing 18F-FDG PET/MRI in breast cancer patients.

Methods

A total of 38 patients (37 females and one male, mean age 57 ± 10 years; range 31–78 years) with newly diagnosed, histopathologically proven breast cancer were prospectively enrolled in this trial. All PET/MRI examinations were assessed for local tumor burden and metastatic spread in two separate reading sessions: (1) One-step algorithm comprising supine whole-body 18F-FDG PET/MRI, and (2) Two-step algorithm comprising a dedicated prone 18F-FDG breast PET/MRI and supine whole-body 18F-FDG PET/MRI.

Results

On a patient based analysis the two-step algorithm correctly identified 37 out of 38 patients with breast carcinoma (97%), while five patients were missed by the one-step 18F-FDG PET/MRI algorithm (33/38; 87% correct identification). On a lesion-based analysis 56 breast cancer lesions were detected in the two-step algorithm and 44 breast cancer lesions could be correctly identified in the one-step 18F-FDG PET/MRI (79%), resulting in statistically significant differences between the two algorithms (p = 0.0015). For axillary lymph node evaluation sensitivity, specificity and accuracy was 93%, 95 and 94%, respectively. Furthermore, distant metastases could be detected in seven patients in both algorithms.

Conclusion

The results demonstrate the necessity and superiority of a two-step 18F-FDG PET/MRI algorithm, comprising dedicated prone breast imaging and supine whole-body imaging, when compared to the one-step algorithm for local and whole-body staging in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ryerson AB, Eheman CR, Altekruse SF, Ward JW, Jemal A, Sherman RL, et al. Annual report to the nation on the status of cancer, 1975–2012, featuring the increasing incidence of liver cancer. Cancer. 2016;122:1312–37. https://doi.org/10.1002/cncr.29936.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81. https://doi.org/10.1016/j.ejca.2009.12.014.

    Article  CAS  PubMed  Google Scholar 

  3. Michaelson JS, Chen LL, Silverstein MJ, Mihm MC Jr, Sober AJ, Tanabe KK, et al. How cancer at the primary site and in the lymph nodes contributes to the risk of cancer death. Cancer. 2009;115:5095–107. https://doi.org/10.1002/cncr.24592.

    Article  PubMed  Google Scholar 

  4. Riegger C, Herrmann J, Nagarajah J, Hecktor J, Kuemmel S, Otterbach F, et al. Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients. Eur J Nucl Med Mol Imaging. 2012;39:852–63. https://doi.org/10.1007/s00259-012-2077-0.

    Article  CAS  Google Scholar 

  5. Heusner TA, Kuemmel S, Koeninger A, Hamami ME, Hahn S, Quinsten A, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging. 2010;37:1077–86. https://doi.org/10.1007/s00259-010-1399-z.

    Article  PubMed  Google Scholar 

  6. Heusner TA, Kuemmel S, Hahn S, Koeninger A, Otterbach F, Hamami ME, et al. Diagnostic value of full-dose FDG PET/CT for axillary lymph node staging in breast cancer patients. Eur J Nucl Med Mol Imaging. 2009;36:1543–50. https://doi.org/10.1007/s00259-009-1145-6.

    Article  CAS  PubMed  Google Scholar 

  7. Garami Z, Hascsi Z, Varga J, Dinya T, Tanyi M, Garai I, et al. The value of 18-FDG PET/CT in early-stage breast cancer compared to traditional diagnostic modalities with an emphasis on changes in disease stage designation and treatment plan. Eur J Surg Oncol :J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2012;38:31–7. https://doi.org/10.1016/j.ejso.2011.09.002.

    Article  CAS  Google Scholar 

  8. Filippi V, Malamitsi J, Vlachou F, Laspas F, Georgiou E, Prassopoulos V, et al. The impact of FDG-PET/CT on the management of breast cancer patients with elevated tumor markers and negative or equivocal conventional imaging modalities. Nucl Med Commun. 2011;32:85–90. https://doi.org/10.1097/MNM.0b013e328341c898.

    Article  PubMed  Google Scholar 

  9. Koolen BB, van der Leij F, Vogel WV, Rutgers EJ, Vrancken Peeters MJ, Elkhuizen PH, et al. Accuracy of 18F-FDG PET/CT for primary tumor visualization and staging in T1 breast cancer. Acta Oncol. 2014;53:50–7. https://doi.org/10.3109/0284186X.2013.783714.

    Article  CAS  PubMed  Google Scholar 

  10. Groheux D, Espie M, Giacchetti S, Hindie E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266:388–405. https://doi.org/10.1148/radiol.12110853.

    Article  PubMed  Google Scholar 

  11. Pinker K, Bogner W, Baltzer P, Gruber S, Bickel H, Brueck B, et al. Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Investig Radiol. 2014;49:421–30. https://doi.org/10.1097/RLI.0000000000000029.

    Article  CAS  Google Scholar 

  12. Garcia-Velloso MJ, Ribelles MJ, Rodriguez M, Fernandez-Montero A, Sancho L, Prieto E, et al. MRI fused with prone FDG PET/CT improves the primary tumour staging of patients with breast cancer. Eur Radiol. 2017;27:3190–8. https://doi.org/10.1007/s00330-016-4685-8.

    Article  Google Scholar 

  13. Sawicki LM, Grueneisen J, Schaarschmidt BM, Buchbender C, Nagarajah J, Umutlu L, et al. Evaluation of (1)(8)F-FDG PET/MRI, (1)(8)F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol. 2016;85:459–65. https://doi.org/10.1016/j.ejrad.2015.12.010.

    Article  PubMed  Google Scholar 

  14. Janssen NNY, Ter Beek LC, Loo CE, Winter-Warnars G, Lange CAH, van Loveren M, et al. Supine breast MRI using respiratory triggering. Acad Radiol. 2017;24:818–25. https://doi.org/10.1016/j.acra.2017.01.003.

    Article  PubMed  Google Scholar 

  15. Peccatori FA, Codacci-Pisanelli G, Del Grande M, Scarfone G, Zugni F, Petralia G. Whole body MRI for systemic staging of breast cancer in pregnant women. Breast. 2017;35:177–81. https://doi.org/10.1016/j.breast.2017.07.014.

    Article  PubMed  Google Scholar 

  16. Pallone MJ, Poplack SP, Avutu HB, Paulsen KD, Barth RJ Jr. Supine breast MRI and 3D optical scanning: a novel approach to improve tumor localization for breast conserving surgery. Ann Surg Oncol. 2014;21:2203–8. https://doi.org/10.1245/s10434-014-3598-5.

    Article  PubMed  Google Scholar 

  17. Mallory MA, Sagara Y, Aydogan F, DeSantis S, Jayender J, Caragacianu D, et al. Feasibility of intraoperative breast MRI and the role of prone versus supine positioning in surgical planning for breast-conserving surgery. Breast J. 2017;23:713–7. https://doi.org/10.1111/tbj.12796.

    Article  PubMed  Google Scholar 

  18. Dietzel M, Zoubi R, Burmeister HP, Runnebaum IB, Kaiser WA, Baltzer PA. Combined staging at one stop using MR mammography: evaluation of an extended protocol to screen for distant metastasis in primary breast cancer - initial results and diagnostic accuracy in a prospective study. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2012;184:618–23. https://doi.org/10.1055/s-0031-1271117.

    Article  CAS  PubMed  Google Scholar 

  19. Oehmigen M, Lindemann ME, Lanz T, Kinner S, Quick HH. Integrated PET/MR breast cancer imaging: attenuation correction and implementation of a 16-channel RF coil. Med Phys. 2016;43:4808. https://doi.org/10.1118/1.4959546.

    Article  PubMed  Google Scholar 

  20. Quick HH. Integrated PET/MR. J Magn Reson Imaging: JMRI. 2014;39:243–58. https://doi.org/10.1002/jmri.24523.

    Article  PubMed  Google Scholar 

  21. Paulus DH, Quick HH. Hybrid positron emission tomography/magnetic resonance imaging: challenges, methods, and state of the art of hardware component attenuation correction. Investig Radiol. 2016;51:624–34. https://doi.org/10.1097/RLI.0000000000000289.

    Article  Google Scholar 

  22. Kartmann R, Paulus DH, Braun H, Aklan B, Ziegler S, Navalpakkam BK, et al. Integrated PET/MR imaging: automatic attenuation correction of flexible RF coils. Med Phys. 2013;40:082301. https://doi.org/10.1118/1.4812685.

    Article  PubMed  Google Scholar 

  23. Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE. BI-RADS((R)) fifth edition: a summary of changes. Diagn Interv Imaging. 2017;98:179–90. https://doi.org/10.1016/j.diii.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  24. Moy L, Ponzo F, Noz ME, Maguire GQ Jr, Murphy-Walcott AD, Deans AE, et al. Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med : Off Publ, Soc Nucl Med. 2007;48:528–37.

    Article  Google Scholar 

  25. Heusner TA, Hahn S, Jonkmanns C, Kuemmel S, Otterbach F, Hamami ME, et al. Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: initial results. Br J Radiol. 2011;84:126–35. https://doi.org/10.1259/bjr/93330765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grueneisen J, Nagarajah J, Buchbender C, Hoffmann O, Schaarschmidt BM, Poeppel T, et al. Positron emission tomography/magnetic resonance imaging for local tumor staging in patients with primary breast Cancer: a comparison with positron emission tomography/computed tomography and magnetic resonance imaging. Investig Radiol. 2015;50:505–13. https://doi.org/10.1097/RLI.0000000000000197.

    Article  CAS  Google Scholar 

  27. Anderson BO, Distelhorst SR. Guidelines for international breast health and cancer control--implementation. Introduction Cancer. 2008;113:2215–6. https://doi.org/10.1002/cncr.23980.

    Article  PubMed  Google Scholar 

  28. Houssami N, Ciatto S, Macaskill P, Lord SJ, Warren RM, Dixon JM, et al. Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol : Off J Am Soc Clin Oncol. 2008;26:3248–58. https://doi.org/10.1200/JCO.2007.15.2108.

    Article  Google Scholar 

  29. Catalano OA, Daye D, Signore A, Iannace C, Vangel M, Luongo A, et al. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol. 2017;51:281–8. https://doi.org/10.3892/ijo.2017.4012.

    Article  CAS  PubMed  Google Scholar 

  30. Cardoso F, Costa A, Norton L, Senkus E, Aapro M, Andre F, et al. ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2). Breast. 2014;23:489–502. https://doi.org/10.1016/j.breast.2014.08.009.

    Article  CAS  Google Scholar 

  31. Melsaether AN, Raad RA, Pujara AC, Ponzo FD, Pysarenko KM, Jhaveri K, et al. Comparison of whole-body (18)F FDG PET/MR imaging and whole-body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast Cancer. Radiology. 2016;281:193–202. https://doi.org/10.1148/radiol.2016151155.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med: Off Publ, Soc Nucl Med. 2012;53:1244–52. https://doi.org/10.2967/jnumed.112.109306.

    Article  Google Scholar 

  33. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med: Off Publ, Soc Nucl Med. 2012;53:928–38. https://doi.org/10.2967/jnumed.112.105338.

    Article  Google Scholar 

  34. Tabouret-Viaud C, Botsikas D, Delattre BM, Mainta I, Amzalag G, Rager O, et al. PET/MR in breast cancer. Semin Nucl Med. 2015;45:304–21. https://doi.org/10.1053/j.semnuclmed.2015.03.003.

    Article  PubMed  Google Scholar 

  35. Taneja S, Jena A, Goel R, Sarin R, Kaul S. Simultaneous whole-body (1)(8)F-FDG PET-MRI in primary staging of breast cancer: a pilot study. Eur J Radiol. 2014;83:2231–9. https://doi.org/10.1016/j.ejrad.2014.09.008.

    Article  PubMed  Google Scholar 

  36. Pace L, Nicolai E, Luongo A, Aiello M, Catalano OA, Soricelli A, et al. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol. 2014;83:289–96. https://doi.org/10.1016/j.ejrad.2013.11.002.

    Article  PubMed  Google Scholar 

  37. Gombos EC, Jayender J, Richman DM, Caragacianu DL, Mallory MA, Jolesz FA, et al. Intraoperative supine breast MR imaging to quantify tumor deformation and detection of residual breast cancer: preliminary results. Radiology. 2016;281:720–9. https://doi.org/10.1148/radiol.2016151472.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S. Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology. 2017;283:361–70. https://doi.org/10.1148/radiol.2016161444.

    Article  PubMed  Google Scholar 

  39. Heusch P, Buchbender C, Beiderwellen K, Nensa F, Hartung-Knemeyer V, Lauenstein TC, et al. Standardized uptake values for [(1)(8)F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol. 2013;82:870–6. https://doi.org/10.1016/j.ejrad.2013.01.008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Kirchner.

Ethics declarations

Conflicts of interest

None.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchner, J., Grueneisen, J., Martin, O. et al. Local and whole-body staging in patients with primary breast cancer: a comparison of one-step to two-step staging utilizing 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging 45, 2328–2337 (2018). https://doi.org/10.1007/s00259-018-4102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4102-4

Keywords

Navigation