Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers

  • Eve Piekarski
  • Renata Chequer
  • Vincent Algalarrondo
  • Ludivine Eliahou
  • Besma Mahida
  • Jonathan Vigne
  • David Adams
  • Michel S. Slama
  • Dominique Le Guludec
  • Francois Rouzet
Original Article

Abstract

Purpose

Cardiac involvement in familial transthyretin (TTR) amyloidosis is of major prognostic value, and the development of early-diagnostic tools that could trigger the use of new disease-modifying treatments is crucial. The aim of our study was to compare the respective contributions of 99mTc-diphosphonate scintigraphy (DPD, detecting amyloid deposits) and 123I-MIBG (MIBG, assessing cardiac sympathetic denervation) in patients with genetically proven TTR mutation referred for the assessment of cardiac involvement.

Methods

We prospectively studied 75 consecutive patients (classified as symptomatic or asymptomatic carriers), using clinical evaluation, biomarkers (troponin and BNP), echocardiography, and nuclear imaging. Patients were classified as having normal heart-to-mediastinum (HMR) MIBG uptake ratio 4 h after injection (defined by HM4 ≥ 1.85) or abnormal HM4 < 1.85, and positive DPD uptake (grade ≥ 1 of Perugini classification) or negative DPD uptake.

Results

Among 75 patients, 49 (65%) presented with scintigraphic sympathetic cardiac denervation and 29 (39%) with myocardial diphosphonate uptake. When MIBG was normal, DPD was negative except for two patients. Age was an independent predictor of abnormal scintigraphic result of both MIBG and DPD (HR 1.08 and 1.15 respectively), whereas echocardiographic-derived indicators of increased left ventricular filling pressure (E/e’ ratio) was an independent predictor of abnormal MIBG (HR 1.33) and global longitudinal strain of positive DPD (HR 1.45). In asymptomatic patients (n = 31), MIBG was abnormal in 48% (n = 15) among whom 50% had a normal DPD; all those with a normal MIBG (n = 16) had a normal DPD.

Conclusions

In TTR mutation carriers, cardiac sympathetic denervation evidenced by decreased MIBG uptake is detected earlier than amyloid burden evidenced by DPD. These results raise the possibility of a diagnostic role for MIBG scintigraphy at an early stage of cardiac involvement in TTR-mutated carriers, in addition to its well-established prognostic value.

Keywords

Amyloidosis Transthyretin Cardiac amyloidosis MIBG scintigraphy Diphosphonate scintigraphy 

Notes

Funding

This study has been supported by the Association Française Contre l’Amylose.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

259_2018_3963_MOESM1_ESM.doc (114 kb)
ESM 1 (DOC 114 kb)

References

  1. 1.
    Andrade C. A peculiar form of peripheral neuropathy. Familiar atypical generalized amyloidosis with special involvement of peripheral nerves. Brain. 1952;75:408–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams D, Cauquil C, Labeyrie C, Beaudonnet G, Algalarrondo V, Théaudin M. TTR kinetic stabilizers and TTR gene silencing:a new era in therapy for familial amyloidotic polyneuropathies. Expert Opin Pharmacother. 2016;17(6):791–802.CrossRefPubMedGoogle Scholar
  3. 3.
    Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, et al. Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation. 2015;99(9):1847–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Planté-Bordeneuve V, Lozeron P, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79(8):785–92.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Adams D, Suhr OB, Dyck PJ, Litchy WJ, Leahy RG, Chen J, et al. Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017 Sep 11;17(1):181.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Benson MD, Dasgupta NR, Rissing SM, Smith J, Feigenbaum H. Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid. 2017 Dec;24(4):219–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Castano A, Drachman BM, Judge D, Maurer MS. Natural history and therapy of TTR-cardiac amyloidosis: emerging disease-modifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail Rev. 2015;20(2):163–78.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arbustini E, Merlini G. Early identification of transthyretin-related hereditary cardiac amyloidosis. J Am Coll Cardiol Img. 2014;7(5):511–4.CrossRefGoogle Scholar
  9. 9.
    Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387(10038):2641–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Algalarrondo V, Piekarski E, Eliahou L, Le Guludec D, Slama MS, Rouzet F. Can nuclear imaging techniques predict patient outcome and guide medical management decisions in hereditary transthyretin cardiac amyloidosis? Curr Cardiol Rep. In press.Google Scholar
  11. 11.
    Minutoli F, Di Bella G, Mazzeo A, Donato R, Russo M, Scribano E, et al. Comparison between (99m)Tc-diphosphonate imaging and MRI with late gadolinium enhancement in evaluating cardiac involvement in patients with transthyretin familial amyloid polyneuropathy. AJR Am J Roentgenol. 2013;200(3):W256–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66(21):2451–66.CrossRefPubMedGoogle Scholar
  13. 13.
    Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, et al. Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2011;38(3):470–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 2016;1(8):880–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Hutt DF, Quigley AM, Page J, Hall ML, Burniston M, Gopaul D, et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging. 2014;15(11):1289–98.CrossRefPubMedGoogle Scholar
  18. 18.
    Haq M, Pawad S, Berk JL, Miller EJ, Ruberg FL. Can 99m-Tc-pyrophosphate aid in early detection of cardiac involvement in asymptomatic variant TTR amyloidosis? J Am Coll Cardiol Img. 2017;10(6):713–4.CrossRefGoogle Scholar
  19. 19.
    Coutinho MC, Cortez-Dias N, Cantinho G, Conceição I, Oliveira A, Bordalo e Sá A, et al. Reduced myocardial 123-iodine metaiodobenzylguanidine uptake: a prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging. 2013;6(5):627–36.CrossRefPubMedGoogle Scholar
  20. 20.
    Algalarrondo V, Antonini T, Théaudin M, Chemla D, Benmalek A, Lacroix C, et al. Cardiac Dysautonomia predicts long-term survival in hereditary transthyretin amyloidosis after liver transplantation. J Am Coll Cardiol Img. 2016;9(12):1432–41.CrossRefGoogle Scholar
  21. 21.
    Bechiri MY, Eliahou L, Rouzet F, Fouret PJ, Antonini T, Samuel D, et al. Multimodality imaging of cardiac transthyretin amyloidosis 16 years after a domino liver transplantation. Am J Transplant. 2016;16(7):2208–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Cohen-Solal A, Rouzet F, Berdeaux A, Le Guludec D, Abergel E, Syrota A, et al. Effects of carvedilol on myocardial sympathetic innervation in patients with chronic heart failure. J Nucl Med. 2005;46(11):1796–803.PubMedGoogle Scholar
  23. 23.
    Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Longhi S, Guidalotti PL, Quarta CC, Gagliardi C, Milandri A, Lorenzini M, et al. Identification of TTR-related subclinical amyloidosis with 99mTc-DPD scintigraphy. J Am Coll Cardiol Img. 2014;7(5):531–2.CrossRefGoogle Scholar
  25. 25.
    Pilebro B, Suhr OB, Näslund U, Westermark P, Lindqvist P, Sundström T. (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups J Med Sci. 2016;121(1):17–24.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rossi P, Tessonnier L, Frances Y, Mundler O, Granel B. 99mTc DPD is the preferential bone tracer for diagnosis of cardiac transthyretin amyloidosis. Clin Nucl Med. 2012;37(8):e209–10.CrossRefPubMedGoogle Scholar
  27. 27.
    Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of 99mTc-DPD Scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. J Am Coll Cardiol Img. 2011;4(6):659–70.CrossRefGoogle Scholar
  28. 28.
    Glaudemans AW, van Rheenen RW, van den Berg MP, Noordzij W, Koole M, Blokzijl H, et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid. 2014;21(1):35–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Di Bella G, Minutoli F, Piaggi P, Casale M, Mazzeo A, Zito C, et al. Quantitative comparison between amyloid deposition detected by 99mTc-diphosphonate imaging and myocardial deformation evaluated by strain echocardiography in transthyretin-related cardiac amyloidosis. Circ J. 2016;80(9):1998–2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Moore PT, Burrage MK, Mackenzie E, Law WP, Korczyk D, Mollee P. The utility of 99mTc-DPD scintigraphy in the diagnosis of cardiac amyloidosis: an Australian experience. Heart Lung Circ. 2017;  https://doi.org/10.1016/j.hlc.2016.12.017.
  31. 31.
    Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of 99mTc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid. 2015;22(4):210–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Castaño A, DeLuca A, Weinberg R, Pozniakoff T, Blaner WS, Pirmohamed A, et al. Serial scanning with technetium pyrophosphate (99mTc-PYP) in advanced ATTR cardiac amyloidosis. J Nucl Cardiol. 2016;23(6):1355–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Coutinho CA, Conceição I, Almeida A, Cantinho G, Sargento L, Vagueiro MC. Early detection of sympathetic myocardial denervation in patients with familial amyloid polyneuropathy type I. Rev Port Cardiol. 2004;23(2):201–11.PubMedGoogle Scholar
  34. 34.
    Tanaka M, Hongo M, Kinoshita O, Takabayashi Y, Fujii T, Yazaki Y, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy. J Am Coll Cardiol. 1997;29:168–74.CrossRefPubMedGoogle Scholar
  35. 35.
    Takahashi R, Ono K, Shibata S, Nakamura K, Komatsu J, Ikeda Y, et al. Efficacy of diflunisal on autonomic dysfunction of late-onset familial amyloid polyneuropathy (TTR Val30Met) in a Japanese endemic area. J Neurol Sci. 2014;345(1-2):231–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Sperry BW, Vranian MN, Tower-Rader A, Hachamovitch R, Hanna M, Brunken R, et al. Regional variation in technetium pyrophosphate uptake in transthyretin cardiac amyloidosis and impact on mortality. J Am Coll Cardiol Img. 2018;11(2 Pt 1):234-42CrossRefGoogle Scholar
  37. 37.
    Le Guludec D, Delforge J, Dolle F. Imaging the parasympathetic cardiac innervation with PET. In: Slart R, Tio R, Elsinga P, Schwaiger M, editors. Autonomic innervation of the heart. Berlin: Springer; 2015.Google Scholar
  38. 38.
    Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessel. 2003;18:32–9.CrossRefGoogle Scholar
  39. 39.
    Gill JS, Hunter GJ, Gane G, Camm AJ. Heterogeneity of the human myocardial sympathetic innervation: in vivo demonstration by iodine 123-labeled meta-iodobenzylguanidine scintigraphy. Am Heart J. 1993;126(2):390–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Delahaye N, Dinanian S, Slama MS, Mzabi H, Samuel D, Adams D, et al. Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med. 1999 Apr;26(4):416–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Delahaye N, Rouzet F, Sarda L, Tamas C, Dinanian S, Plante-Bordeneuve V, et al. Impact of liver transplantation on cardiac autonomic denervation in familial amyloid polyneuropathy. Medicine (Baltimore). 2006 Jul;85(4):229–38.CrossRefGoogle Scholar
  42. 42.
    Algalarrondo V, Eliahou L, Thierry I, Bouzeman A, Dasoveanu M, Sebag C, et al. Circadian rhythm of blood pressure reflects the severity of cardiac impairment in familial amyloid polyneuropathy. Arch Cardiovasc Dis. 2012 May;105(5):281–90.  https://doi.org/10.1016/j.acvd.2012.03.004.CrossRefPubMedGoogle Scholar
  43. 43.
    Delahaye N, Le Guludec D, Dinanian S, Delforge J, Slama MS, Sarda L, et al. Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy. Circulation. 2001 Dec 11;104(24):2911–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Kristen AV, Scherer K, Buss S, aus dem Siepen F, Haufe S, Bauer R, et al. Noninvasive risk stratification of patients with transthyretin amyloidosis. J Am Coll Cardiol Img. 2014;7(5):502–10.CrossRefGoogle Scholar
  45. 45.
    Levy J, Hawkins PN, Rowczenio D, Godfrey T, Stawell R, Zamir E. Familial amyloid polyneuropathy associated with the novel transthyretin variant Arg34Gly. Amyloid. 2012;19(4):201–3.CrossRefPubMedGoogle Scholar
  46. 46.
    Jones LA, Skare JC, Harding JA, Cohen AS, Milunsky A, Skinner M. Proline at position 36: a new transthyretin mutation associated with familial amyloidotic polyneuropathy. Am J Hum Genet. 1991;48(5):979–82.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Jacobson DR, Rosenthal CJ, Buxbaum JN. Transthyretin pro 36 associated with familial amyloidotic polyneuropathy in an Ashkenazic Jewish kindred. Hum Genet. 1992;90(1-2):158–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Chaves M, Bettini M, Marciano S, Sáez S, Cristiano E, Rugiero M. Presentations of transthyretin associated familial amyloid polyneuropathy in Argentina. Medicina (B Aires). 2016;76(2):105–8.Google Scholar
  49. 49.
    Zou X, Dong F, Zhang S, Tian R, Sui R. Transthyretin Ala36Pro mutation in a Chinese pedigree of familial transthyretin amyloidosis with elevated vitreous and serum vascular endothelial growth factor. Exp Eye Res. 2013;  https://doi.org/10.1016/j.exer.2013.02.005.
  50. 50.
    Meng LC, Lyu H, Zhang W, Liu J, Wang ZX, Yuan Y. Hereditary transthyretin amyloidosis in eight Chinese families. Chin Med J. 2015;  https://doi.org/10.4103/0366-6999.168048.
  51. 51.
    Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcomes Survey). J Am Coll Cardiol. 2016;68(2):161–72.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eve Piekarski
    • 1
  • Renata Chequer
    • 1
  • Vincent Algalarrondo
    • 2
    • 3
  • Ludivine Eliahou
    • 2
    • 3
  • Besma Mahida
    • 1
  • Jonathan Vigne
    • 1
  • David Adams
    • 3
    • 4
  • Michel S. Slama
    • 2
    • 3
  • Dominique Le Guludec
    • 1
  • Francois Rouzet
    • 1
  1. 1.Nuclear Medicine Department, Bichat Claude Bernard Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), DHU FIRE, Inserm UMR-S 1148Paris Diderot UniversityParisFrance
  2. 2.Cardiology Department, Antoine Béclère Hospital, AP-HPParis-Sud UniversityClamartFrance
  3. 3.French Referent Center for Rare Diseases for FAP (Familial Amyloid Polyneuropathy) (CRMR-NNERF)Bicêtre HospitalLe Kremlin-BicêtreFrance
  4. 4.Neurology Department, AP-HPParis-Sud UniversityLe Kremlin-BicêtreFrance

Personalised recommendations