Skip to main content

Advertisement

Log in

Roles of posttherapy 18F-FDG PET/CT in patients with advanced squamous cell carcinoma of the uterine cervix receiving concurrent chemoradiotherapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To assess the clinical roles of [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) performed 2-3 months after completion of concurrent chemoradiotherapy (CCRT), along with pretherapy characteristics, in patients with advanced squamous cell carcinoma of the uterine cervix enrolled in a prospective randomized clinical trial.

Methods

Posttherapy PET/CT in patients with advanced FIGO stage or positive pelvic or para-aortic lymph node (PALN) defined on pretherapy PET/CT was classified as positive, equivocal, or negative. Overall survival (OS) rates between patients with different PET/CT results are compared. Pretherapy characteristics are examined for association with posttherapy PET/CT results and for prognostic significance in patients with equivocal or negative PET/CT.

Results

PET/CT scans (n = 55) were positive, equivocal and negative in 9, 13 and 33 patients, respectively. All patients with positive scans were confirmed to have residual or metastatic disease and died despite salvage therapies. There is a significant OS difference between patients with positive and equivocal scans (P < .001) but not between patients with equivocal and negative scans (P = .411). Positive pretherapy PALN is associated with positive posttherapy PET/CT (P = .033) and predicts a poorer survival in patients with equivocal or negative posttherapy PET/CT (P < .001).

Conclusions

Positive PET/CT 2-3 months posttherapy implies treatment failure and novel therapy is necessary to improve outcomes for such patients. A more intense posttherapy surveillance may be warranted in patients with positive pretherapy PALN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jaime P, Silvia F, Lynette D, Eduardo LP. Cancers of the female reproductive organs. In: Bernard WS, Christopher PW, editors. World Cancer Report 2014. Lyon: World Health Organization; 2014. p. 465-481.

  2. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol. 2008;26:5802–12.

    Article  PubMed Central  CAS  Google Scholar 

  3. Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. J Amer Med Assoc. 2007;298:2289–95.

    Article  CAS  Google Scholar 

  4. Siva S, Deb S, Young RJ, Hicks RJ, Callahan J, Bressel M, et al. 18F-FDG PET/CT following chemoradiation of uterine cervix cancer provides powerful prognostic stratification independent of HPV status: a prospective cohort of 105 women with mature survival data. Eur J Nucl Med Mol Imaging. 2015;42:1825–32.

    Article  PubMed  Google Scholar 

  5. Scarsbrook A, Vaidyanathan S, Chowdhury F, Swift S, Cooper R, Patel C. Efficacy of qualitative response asessment interpretation criteria at 18F-FDG PET-CT for predcting outcome in locally advanced cervical carcinoma treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2017;44:581–8.

    Article  PubMed  CAS  Google Scholar 

  6. Elit L, Kennedy EB, Fyles A, Metser U. Follow-up for cervical cancer: a program in evidence-based care systematic review and clinical practice guideline update. Curr Oncol. 2016;23:109–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N. Cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv72–83.

    Article  PubMed  CAS  Google Scholar 

  8. Wang CC, Chou HH, Yang LY, Lin H, Liou WS, Tseng CW, et al. A randomized trial comparing concurrent chemoradiotherapy with single-agent cisplatin versus cisplatin plus gemcitabine in patients with advanced cervical cancer: an Asian gynecologic oncology group study. Gynecol Oncol. 2015;137:462–7.

    Article  PubMed  CAS  Google Scholar 

  9. Liu FY, Lai CH, Yang LY, Wang CC, Lin G, Chang CJ, et al. Utility of 18F-FDG PET/CT in patients with advanced squamous cell carcinoma of the uterine cervix receiving concurrent chemoradiotherapy: a parallel study of a prospective randomized trial. Eur J Nucl Med Mol Imaging. 2016;43:1812–23.

    Article  PubMed  CAS  Google Scholar 

  10. Su TP, Lin G, Huang YT, Liu FY, Wang CC, Angel C, et al. Comparison of positron emission tomography/computed tomography and magnetic resonance imaging for posttherapy evaluation in patients with advanced cervical cancer receiving definitive concurrent chemoradiotherapy. Eur J Nucl Med Mol Imaging. Published online first: Nov 20, 2017. https://doi.org/10.1007/S00259-017-3884-0.

  11. Lai CH, Chang CJ, Huang HJ, Hsueh S, Chao A, Yang JE, et al. Role of human papillomavirus genotype in prognosis of early-stage cervical cancer undergoing primary surgery. J Clin Oncol. 2007;25:3628–34.

    Article  PubMed  Google Scholar 

  12. Wang CC, Lai CH, Huang HJ, Chao A, Chang CJ, Chang TC, et al. Clinical effect of human papillomavirus genotypes in patients with cervical cancer undergoing primary radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:1111–20.

    Article  PubMed  Google Scholar 

  13. Hong JH, Tsai CS, Lai CH, Chang TC, Wang CC, Chou HH, et al. Recurrent squamous cell carcinoma of cervix after definitive radiotherapy. Int J Radiat Oncol Biol Phys. 2004;60:249–57.

    Article  PubMed  Google Scholar 

  14. Chang TC, Law KS, Hong JH, Lai CH, Ng KK, Hsueh S, et al. Positron emission tomography for unexplained elevation of serum squamous cell carcinoma antigen levels during follow-up for patients with cervical malignancies. Cancer. 2004;101:164–71.

    Article  PubMed  Google Scholar 

  15. Brooks RA, Rader JS, Dehdashti F, Mutch DG, Powell MA, Thaker PH, et al. Surveillance FDG-PET detection of asymptomatic recurrences in patients with cervical cancer. Gynecol Oncol. 2009;112:104–9.

    Article  PubMed  Google Scholar 

  16. Borcoman E, Le Tourneau C. Pembrolizumab in cervical cancer: latest evidence and clinical usefulness. Ther Adv Med Oncol. 2017;9:431–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Metabolic response on post-therapy FDG-PET predicts patterns of failure after radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2012;83:185–90.

    Article  PubMed  Google Scholar 

  18. Sanz-Viedma S, Torigian DA, Parsons M, Basu S, Alavi A. Potential clinical utility of dual time point FDG-PET for distinguishing benign from malignant lesions: implications for oncological imaging. Rev Esp Med Nucl. 2009;28:159–66.

    Article  PubMed  CAS  Google Scholar 

  19. Naganawa S, Yoshikawa T, Yasaka K, Maeda E, Hayashi N, Abe O. Role of delayed-time-point imaging during abdominal and pelvic cancer screening using FDG-PET/CT in the general population. Medicine (Baltimore). 2017;96:e8832.

    Article  Google Scholar 

  20. Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;19:3745–9.

    Article  PubMed  CAS  Google Scholar 

  21. Hwang L, Bailey A, Lea J, Albuquerque K. Para-aortic nodal metastases in cervical cancer: a blind spot in the International Federation of Gynecology and Obstetrics staging system: current diagnosis and management. Future Oncol. 2015;11:309–22.

    Article  PubMed  CAS  Google Scholar 

  22. Choi HJ, Ju W, Myung SK, Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010;101:1471–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was funded by Chang Gung Memorial Hospital, Linkou (CMRPG381141 and CMRPG381142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chyong-Huey Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

We obtained informed consents from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FY., Su, TP., Wang, CC. et al. Roles of posttherapy 18F-FDG PET/CT in patients with advanced squamous cell carcinoma of the uterine cervix receiving concurrent chemoradiotherapy. Eur J Nucl Med Mol Imaging 45, 1197–1204 (2018). https://doi.org/10.1007/s00259-018-3957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-3957-8

Keywords

Navigation