Simultaneous whole-body 18F–PSMA-1007-PET/MRI with integrated high-resolution multiparametric imaging of the prostatic fossa for comprehensive oncological staging of patients with prostate cancer: a pilot study

  • Martin T. Freitag
  • Claudia Kesch
  • Jens Cardinale
  • Paul Flechsig
  • Ralf Floca
  • Matthias Eiber
  • David Bonekamp
  • Jan P. Radtke
  • Clemens Kratochwil
  • Klaus Kopka
  • Markus Hohenfellner
  • Albrecht Stenzinger
  • Heinz-Peter Schlemmer
  • Uwe Haberkorn
  • Frederik Giesel
Original Article

Abstract

Introduction

The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body 18F–PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients.

Methods

Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after 18F–PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUVmean-quantification was performed using a 3D–isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0).

Results

The examinations were well accepted by patients and comprised 1 h. SUVmean-values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of 18F–PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results.

Conclusions

The presented 18F–PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC.

Keywords

68Ga-PSMA-11 18F-PSMA-1007 PET/MRI PSMA Prostate cancer PSMA-PET 

Notes

Acknowledgements

We appreciate the support of Dr. Stefan Kegel and of our technicians Verena Schneider and Rene Hertel.

Compliance with ethical standards

Conflicts of interest

Jens Cardinale, Prof. Dr. Frederik Giesel, Prof. Dr. Uwe Haberkorn and Prof. Dr. Klaus Kopka have applied for a patent of PSMA-1007. The other authors report no conflict of interest.

Informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.CrossRefPubMedGoogle Scholar
  2. 2.
    Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56:668–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Eder M, Schäfer M, Bauder-Wüst U, Hull W-E, Wängler C, Mier W, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:4022–8.CrossRefGoogle Scholar
  5. 5.
    Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:3036–43.CrossRefGoogle Scholar
  6. 6.
    Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:7645–53.CrossRefGoogle Scholar
  7. 7.
    Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med Off Publ Soc Nucl Med. 2015;56:1003–10.Google Scholar
  8. 8.
    Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2015;17:565–74.CrossRefGoogle Scholar
  9. 9.
    Cardinale J, Schafer M, Benešova M, Bauder-Wust U, Leotta K, Eder M, et al. Preclinical evaluation of [18F]PSMA-1007: a new PSMA-ligand for prostate cancer imaging. J Nucl Med. 2017;58:425–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:678–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Freitag MT, Radtke JP, Afshar-Oromieh A, Roethke MC, Hadaschik BA, Gleave M, et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in (68)Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging. 2017;44:776–87.CrossRefPubMedGoogle Scholar
  12. 12.
    Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41:887–97.CrossRefPubMedGoogle Scholar
  13. 13.
    Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70:829–36.CrossRefPubMedGoogle Scholar
  14. 14.
    Freitag MT, Radtke JP, Hadaschik BA, Kopp-Schneider A, Eder M, Kopka K, et al. Comparison of hybrid (68)Ga-PSMA PET/MRI and (68)Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:70–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Freitag MT, Fenchel M, Bäumer P, Heußer T, Rank CM, Kachelrieß M, et al. Improved clinical workflow for simultaneous whole-body PET/MRI using high-resolution CAIPIRINHA-accelerated MR-based attenuation correction. Eur J Radiol. 2017;96:12–20.Google Scholar
  16. 16.
    Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur Urol. 2016;69:16–40.CrossRefPubMedGoogle Scholar
  17. 17.
    Biederer J. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008;8:125–30.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wallis CJD, English JC, Goldenberg SL. The role of resection of pulmonary metastases from prostate cancer: a case report and literature review. Can Urol Assoc J. 2011;5:e104–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Somford DM, Hamoen EH, Fütterer JJ, van Basten JP, Hulsbergen-van de Kaa CA, Vreuls W, et al. The predictive value of endorectal 3 tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol. 2013;190:1728–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Radtke JP, Hadaschik BA, Wolf MB, Freitag MT, Schwab C, Alt C, et al. The impact of magnetic resonance imaging on prediction of extraprostatic extension and prostatectomy outcome in patients with low-, intermediate- and high-risk prostate cancer: try to find a standard. J Endourol. 2015;29:1396–405.CrossRefPubMedGoogle Scholar
  21. 21.
    Koerber SA, Utzinger MT, Kratochwil C, Kesch C, Haefner M, Katayama S, et al. (68)Ga-PSMA11-PET/CT in newly diagnosed carcinoma of the prostate: correlation of intraprostatic PSMA uptake with several clinical parameters. J Nucl Med Off Publ Soc Nucl Med. 2017.Google Scholar
  22. 22.
    Lederer CM, Shirley VS, Browne E, editors. Table of isotopes. 7th ed. New York: Wiley; 1978.Google Scholar
  23. 23.
    Hong I, Rothfuss H, Fürst S, Michel C, Nekolla SG, Bendriem B, et al. Prompt gamma correction for Ga-68 PSMA PET studies. IEEE Xplore [Internet]. 2015; Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7582166. Accessed 2017–04-02.
  24. 24.
    Heußer T, Mann P, Rank CM, Schäfer M, Dimitrakopoulou-Strauss A, Schlemmer H-P, et al. Investigation of the halo-artifact in 68Ga-PSMA-11-PET/MRI. PLoS One. 2017;12:e0183329.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Afshar-Oromieh A, Wolf M, Haberkorn U, Kachelrieß M, Gnirs R, Kopka K, et al. Effects of arm truncation on the appearance of the halo artifact in 68Ga-PSMA-11 (HBED-CC) PET/MRI. Eur J Nucl Med Mol Imaging. 2017.Google Scholar
  26. 26.
    Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K. MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE). Magn Reson Med. 2013;70:1047–57.CrossRefPubMedGoogle Scholar
  27. 27.
    Rezaei A, Salvo K, Vahle T, Panin V, Casey M, Boada F, et al. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate. Phys Med Biol. 2017;62:6515–31.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Martin T. Freitag
    • 1
  • Claudia Kesch
    • 2
  • Jens Cardinale
    • 3
  • Paul Flechsig
    • 4
  • Ralf Floca
    • 5
  • Matthias Eiber
    • 6
  • David Bonekamp
    • 1
  • Jan P. Radtke
    • 2
  • Clemens Kratochwil
    • 4
  • Klaus Kopka
    • 3
  • Markus Hohenfellner
    • 2
  • Albrecht Stenzinger
    • 7
  • Heinz-Peter Schlemmer
    • 1
  • Uwe Haberkorn
    • 4
    • 8
  • Frederik Giesel
    • 4
  1. 1.Department of RadiologyGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of UrologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Division of Radiopharmaceutical ChemistryGerman Cancer Research CenterHeidelbergGermany
  4. 4.Department of Nuclear MedicineUniversity Hospital HeidelbergHeidelbergGermany
  5. 5.Medical Image Computing GroupGerman Cancer Research CenterHeidelbergGermany
  6. 6.Department of Nuclear MedicineTechnical University Hospital MunichMunichGermany
  7. 7.Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
  8. 8.Clinical Cooperation Unit Nuclear MedicineGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations