Skip to main content

Advertisement

Log in

Presynaptic dopamine depletion determines the timing of levodopa-induced dyskinesia onset in Parkinson’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Reduced presynaptic dopaminergic activity plays an important role in the development of levodopa-induced dyskinesia (LID) in Parkinson’s disease (PD). In this study, we investigated whether dopaminergic function in the nigrostriatal system is associated with the timing of LID onset.

Methods

From among 412 drug-naive PD patients who underwent a dopamine transporter (DAT) PET scan during their baseline evaluation, we enrolled 65 patients who developed LID during a follow-up period of >2 years. Based on the time from PD onset, LID was classified as early, intermediate or late onset. We then compared DAT availability in the striatal subregions of the patients in the three groups.

Results

The demographic characteristics did not differ among the three patient groups except for earlier intervention of levodopa therapy in the early LID onset group (p = 0.001). After adjusting for age at PD onset, gender, timing of levodopa therapy from PD onset, and the severity of PD motor symptoms, DAT activity in the posterior putamen was found to be significantly lower in the early LID onset group than in the late LID onset group (p = 0.017). Multivariate linear regression analysis showed that low DAT activity in the posterior putamen was significantly associated with the early appearance of LID in the early LID onset group (β = 16.039, p = 0.033).

Conclusion

This study demonstrated that low DAT activity in the posterior putamen at baseline is a major risk factor for the early onset of LID in patients with PD, suggesting that the degree of presynaptic dopaminergic denervation plays an important role in determining the timing of LID onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20(4):415–55.

    Article  CAS  PubMed  Google Scholar 

  2. Nutt JG. Levodopa-induced dyskinesia: review, observations, and speculations. Neurology. 1990;40(2):340–5.

    Article  CAS  PubMed  Google Scholar 

  3. Pechevis M, Clarke CE, Vieregge P, Khoshnood B, Deschaseaux-Voinet C, Berdeaux G, et al. Effects of dyskinesias in Parkinson’s disease on quality of life and health-related costs: a prospective European study. Eur J Neurol. 2005;12(12):956–63.

    Article  CAS  PubMed  Google Scholar 

  4. Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2(8):577–88.

    Article  CAS  PubMed  Google Scholar 

  5. Cenci MA, Lundblad M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem. 2006;99(2):381–92.

    Article  CAS  PubMed  Google Scholar 

  6. Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord. 2008;23(Suppl 3):S570–9.

    Article  PubMed  Google Scholar 

  7. Schneider JS. Levodopa-induced dyskinesias in parkinsonian monkeys: relationship to extent of nigrostriatal damage. Pharmacol Biochem Behav. 1989;34(1):193–6.

    Article  CAS  PubMed  Google Scholar 

  8. Boyce S, Rupniak NM, Steventon MJ, Iversen SD. Nigrostriatal damage is required for induction of dyskinesias by L-DOPA in squirrel monkeys. Clin Neuropharmacol. 1990;13(5):448–58.

    Article  CAS  PubMed  Google Scholar 

  9. de la Fuente-Fernandez R, Pal PK, Vingerhoets FJ, Kishore A, Schulzer M, Mak EK, et al. Evidence for impaired presynaptic dopamine function in parkinsonian patients with motor fluctuations. J Neural Transm. 2000;107(1):49–57.

    Article  PubMed  Google Scholar 

  10. Chase TN. Levodopa therapy: consequences of the nonphysiologic replacement of dopamine. Neurology. 1998;50(5 Suppl 5):S17–25.

    Article  CAS  PubMed  Google Scholar 

  11. Hong JY, Oh JS, Lee I, Sunwoo MK, Ham JH, Lee JE, et al. Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease. Neurology. 2014;82(18):1597–604.

    Article  CAS  PubMed  Google Scholar 

  12. Huot P. L-DOPA-induced dyskinesia, is striatal dopamine depletion a requisite? J Neurol Sci. 2015;351(1-2):9–12.

    Article  CAS  PubMed  Google Scholar 

  13. Sunwoo MK, Kim KM, Hong JY, Sohn YH, Lee PH. Levodopa-induced dyskinesia in a patient who has normal presynaptic dopaminergic neurons. Mov Disord. 2013;28(8):1152–3.

    Article  PubMed  Google Scholar 

  14. Bedard PJ, Blanchet PJ, Levesque D, Soghomonian JJ, Grondin R, Morissette M, et al. Pathophysiology of L-dopa-induced dyskinesias. Mov Disord. 1999;14(Suppl 1):4–8.

    PubMed  Google Scholar 

  15. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484–91.

    Article  CAS  PubMed  Google Scholar 

  16. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51(6):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tinazzi M, Ottaviani S, Isaias IU, Pasquin I, Steinmayr M, Vampini C, et al. [123I]FP-CIT SPET imaging in drug-induced Parkinsonism. Mov Disord. 2008;23(13):1825–9.

    Article  PubMed  Google Scholar 

  18. Oh M, Kim JS, Kim JY, Shin KH, Park SH, Kim HO, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med. 2012;53(3):399–406.

    Article  CAS  PubMed  Google Scholar 

  19. Hong JY, Sunwoo MK, Oh JS, Kim JS, Sohn YH, Lee PH. Persistent drug-induced parkinsonism in patients with normal dopamine transporter imaging. PLoS One. 2016;11(6):e0157410.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wenning GK, Litvan I, Tolosa E. Milestones in atypical and secondary parkinsonisms. Mov Disord. 2011;26(6):1083–95.

    Article  PubMed  Google Scholar 

  21. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):2649–53.

    Article  PubMed  Google Scholar 

  22. Eggers C, Kahraman D, Fink GR, Schmidt M, Timmermann L. Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT single photon emission computed tomography. Mov Disord. 2011;26(3):416–23.

    Article  PubMed  Google Scholar 

  23. Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang DR, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab. 2001;21(9):1034–57.

    Article  CAS  PubMed  Google Scholar 

  24. Oh JS, Oh M, Chung SJ, Kim JS. Cerebellum-specific 18F-FDG PET analysis for the detection of subregional glucose metabolism changes in spinocerebellar ataxia. Neuroreport. 2014;25(15):1198–202.

    Article  CAS  PubMed  Google Scholar 

  25. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.

    Article  CAS  PubMed  Google Scholar 

  26. Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M. Young- versus older-onset Parkinson’s disease: impact of disease and psychosocial consequences. Mov Disord. 2003;18(11):1250–6.

    Article  PubMed  Google Scholar 

  27. Lyons KE, Hubble JP, Troster AI, Pahwa R, Koller WC. Gender differences in Parkinson’s disease. Clin Neuropharmacol. 1998;21(2):118–21.

    CAS  PubMed  Google Scholar 

  28. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol. 2005;62(4):601–5.

    Article  PubMed  Google Scholar 

  29. Parkinson study group. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP subjects not requiring levodopa. Ann Neurol. 1996;39(1):29–36.

    Article  Google Scholar 

  30. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord. 2006;21(11):1844–50.

    Article  PubMed  Google Scholar 

  31. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord. 2007;22(10):1379–89.

    Article  PubMed  Google Scholar 

  32. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123:2297–305.

    Article  PubMed  Google Scholar 

  33. Denny AP, Behari M. Motor fluctuations in Parkinson’s disease. J Neurol Sci. 1999;165(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  34. Yahalom G, Cohen OS, Warmann-Alaluf N, Shabat C, Strauss H, Elincx-Benizri S, et al. The impact of early versus late levodopa administration. J Neural Transm. 2017;124(4):471–6.

    Article  CAS  PubMed  Google Scholar 

  35. Nadjar A, Gerfen CR, Bezard E. Priming for L-dopa-induced dyskinesia in Parkinson’s disease: a feature inherent to the treatment or the disease? Prog Neurobiol. 2009;87(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  36. Brotchie JM, Lee J, Venderova K. Levodopa-induced dyskinesia in Parkinson’s disease. J Neural Transm. 2005;112(3):359–91.

    Article  CAS  PubMed  Google Scholar 

  37. Jenner P. Factors influencing the onset and persistence of dyskinesia in MPTP-treated primates. Ann Neurol. 2000;47(4 Suppl 1):S90–9.

    CAS  PubMed  Google Scholar 

  38. Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2004;16(1):110–23.

    Article  CAS  PubMed  Google Scholar 

  39. Scholz B, Svensson M, Alm H, Skold K, Falth M, Kultima K, et al. Striatal proteomic analysis suggests that first L-dopa dose equates to chronic exposure. PLoS One. 2008;3(2):e1589.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Winkler C, Kirik D, Bjorklund A, Cenci MA. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2002;10(2):165–86.

    Article  PubMed  Google Scholar 

  41. Iravani MM, McCreary AC, Jenner P. Striatal plasticity in Parkinson’s disease and L-dopa induced dyskinesia. Parkinsonism Relat Disord. 2012;18(Suppl 1):S123–5.

    Article  PubMed  Google Scholar 

  42. Zesiewicz TA, Sullivan KL, Hauser RA. Levodopa-induced dyskinesia in Parkinson’s disease: epidemiology, etiology, and treatment. Curr Neurol Neurosci Rep. 2007;7(4):302–10.

    Article  CAS  PubMed  Google Scholar 

  43. Quinn N, Critchley P, Marsden CD. Young onset Parkinson’s disease. Mov Disord. 1987;2(2):73–91.

    Article  CAS  PubMed  Google Scholar 

  44. Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol. 2006;63(12):1756–60.

    Article  PubMed  Google Scholar 

  45. Onofrj M, Paci C, Thomas A. Sudden appearance of invalidating dyskinesia-dystonia and off fluctuations after the introduction of levodopa in two dopaminomimetic drug naive patients with stage IV Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1998;65(4):605–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mouradian MM, Juncos JL, Fabbrini G, Schlegel J, Bartko JJ, Chase TN. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms, Part II. Ann Neurol. 1988;24(3):372–8.

    Article  CAS  PubMed  Google Scholar 

  47. Cenci MA. Presynaptic mechanisms of L-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol. 2014;5:242.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Di Monte DA, McCormack A, Petzinger G, Janson AM, Quik M, Langston WJ. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord. 2000;15(3):459–66.

    Article  PubMed  Google Scholar 

  49. Hilker R, Schweitzer K, Coburger S, Ghaemi M, Weisenbach S, Jacobs AH, et al. Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol. 2005;62(3):378–82.

    Article  PubMed  Google Scholar 

  50. Bruck A, Aalto S, Rauhala E, Bergman J, Marttila R, Rinne JO. A follow-up study on 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease shows nonlinear progression in the putamen. Mov Disord. 2009;24(7):1009–15.

    Article  PubMed  Google Scholar 

  51. Kuriakose R, Stoessl AJ. Imaging the nigrostriatal system to monitor disease progression and treatment-induced complications. Prog Brain Res. 2010;184:177–92.

    Article  PubMed  Google Scholar 

  52. Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley SJ, et al. Dopamine transporters decrease with age. J Nucl Med. 1996;37(4):554–9.

    CAS  PubMed  Google Scholar 

  53. Kaasinen V, Joutsa J, Noponen T, Johansson J, Seppanen M. Effects of aging and gender on striatal and extrastriatal [123I]FP-CIT binding in Parkinson’s disease. Neurobiol Aging. 2015;36(4):1757–63.

    Article  CAS  PubMed  Google Scholar 

  54. Lee JJ, Oh JS, Ham JH, Lee DH, Lee I, Sohn YH, et al. Association of body mass index and the depletion of nigrostriatal dopamine in Parkinson’s disease. Neurobiol Aging. 2016;38:197–204.

    Article  CAS  PubMed  Google Scholar 

  55. Maeda T, Nagata K, Yoshida Y, Kannari K. Serotonergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-DOPA. Brain Res. 2005;1046(1-2):230–3.

    Article  CAS  PubMed  Google Scholar 

  56. Ballanger B, Beaudoin-Gobert M, Neumane S, Epinat J, Metereau E, Duperrier S, et al. Imaging dopamine and serotonin systems on MPTP monkeys: a longitudinal PET investigation of compensatory mechanisms. J Neurosci. 2016;36(5):1577–89.

    Article  CAS  PubMed  Google Scholar 

  57. Nevalainen N, Af Bjerken S, Gerhardt GA, Stromberg I. Serotonergic nerve fibers in L-DOPA-derived dopamine release and dyskinesia. Neuroscience. 2014;260:73–86.

    Article  CAS  PubMed  Google Scholar 

  58. Scheffel U, Lever JR, Abraham P, Parham KR, Mathews WB, Kopajtic T, et al. N-substituted phenyltropanes as in vivo binding ligands for rapid imaging studies of the dopamine transporter. Synapse. 1997;25(4):345–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and welfare, Republic of Korea (grant number: HI16C1118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Hyu Lee.

Ethics declarations

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Electronic supplementary material

ESM 1

(PDF 19 kb)

ESM 2

(PDF 141 kb)

ESM 3

(GIF 83 kb)

High resolution image (TIFF 844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, H.S., Chung, S.J., Chung, S.J. et al. Presynaptic dopamine depletion determines the timing of levodopa-induced dyskinesia onset in Parkinson’s disease. Eur J Nucl Med Mol Imaging 45, 423–431 (2018). https://doi.org/10.1007/s00259-017-3844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3844-8

Keywords

Navigation