PET and SPECT imaging of melanoma: the state of the art

Review Article

Abstract

Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F–FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.

Keywords

Melanoma Molecular imaging Positron emission tomography (PET) Single-photon emission computed tomography (SPECT) Cancer Theranostics Immunotherapy 

Notes

Acknowledgements

This work was sponsored by the PhD Innovation Fund of Shanghai Jiao Tong University School of Medicine to Weijun Wei (No. BXJ201736), and by the National Institutes of Health (1R01CA205101, P30CA014520, and T32GM008505) and the American Cancer Society (125246-RSG-13-099-01-CCE).

Compliance with ethical standards

Conflict of interest

The authors have declared no competing interests.

References

  1. 1.
  2. 2.
    Trinh VA. Current management of metastatic melanoma. Am J Health-Syst Pharm: AJHP: Off J Am Soc Health-Syst Pharm. 2008;65:S3–8. https://doi.org/10.2146/ajhp080460.CrossRefGoogle Scholar
  3. 3.
    Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017; https://doi.org/10.1038/nrclinonc.2017.43.
  4. 4.
    Wong AN, McArthur GA, Hofman MS, Hicks RJ. The Advantages and Challenges of Using FDG PET/CT for Response Assessment in Melanoma in the Era of Targeted Agents and Immunotherapy. Eur J Nucl Med Mol Imaging. 2017; https://doi.org/10.1007/s00259-017-3691-7.
  5. 5.
    Krug B, Crott R, Lonneux M, Baurain JF, Pirson AS, Vander BT. Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology. 2008;249:836–44. https://doi.org/10.1148/radiol.2493080240.PubMedCrossRefGoogle Scholar
  6. 6.
    Danielsen M, Kjaer A, Wu M, Martineau L, Nosrati M, Leong SP, et al. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma. Am J Nucl Med Mol Imaging. 2016;6:277–85.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gilles R, de Geus-Oei LF, Mulders PF, Oyen WJ. Immunotherapy response evaluation with (18)F-FDG-PET in patients with advanced stage renal cell carcinoma. World J Urol. 2013;31:841–6. https://doi.org/10.1007/s00345-011-0723-y.PubMedCrossRefGoogle Scholar
  8. 8.
    Acland KM, Healy C, Calonje E, O’Doherty M, Nunan T, Page C, et al. Comparison of positron emission tomography scanning and sentinel node biopsy in the detection of micrometastases of primary cutaneous malignant melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:2674–8. https://doi.org/10.1200/JCO.2001.19.10.2674.CrossRefGoogle Scholar
  9. 9.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med: Off Publ Soc Nucl Med. 2008;49:480–508. https://doi.org/10.2967/jnumed.107.047787.CrossRefGoogle Scholar
  10. 10.
    Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16:e270–8. https://doi.org/10.1016/S1470-2045(15)70057-4.PubMedCrossRefGoogle Scholar
  11. 11.
    Schellinger PD, Meinck HM, Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neuro-Oncol. 1999;44:275–81.CrossRefGoogle Scholar
  12. 12.
    Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi M. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis. Am J Nucl Med Mol Imaging. 2016;6:310–27.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Valencak J, Heere-Ress E, Traub-Weidinger T, Raderer M, Schneeberger A, Thalhammer T, et al. Somatostatin receptor scintigraphy with 111In-DOTA-lanreotide and 111In-DOTA-Tyr3-octreotide in patients with stage IV melanoma: in-vitro and in-vivo results. Melanoma Res. 2005;15:523–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Hong H, Sun J, Cai W. Anatomical and molecular imaging of skin cancer. Clin Cosmet Investig Dermatol. 2008;1:1–17.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ren G, Pan Y, Cheng Z. Molecular probes for malignant melanoma imaging. Curr Pharm Biotechnol. 2010;11:590–602.PubMedCrossRefGoogle Scholar
  16. 16.
    d’Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, et al. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma Res. 2015;28:520–44. https://doi.org/10.1111/pcmr.12393.PubMedCrossRefGoogle Scholar
  17. 17.
    Dadachova E, Casadevall A. Melanin as a potential target for radionuclide therapy of metastatic melanoma. Future Oncol. 2005;1:541–9. https://doi.org/10.2217/14796694.1.4.541.PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma. Lancet. 2005;365:687–701. https://doi.org/10.1016/S0140-6736(05)17951-3.PubMedCrossRefGoogle Scholar
  19. 19.
    Ings RM. The melanin binding of drugs and its implications. Drug Metab Rev. 1984;15:1183–212. https://doi.org/10.3109/03602538409033561.PubMedCrossRefGoogle Scholar
  20. 20.
    Chezal JM, Papon J, Labarre P, Lartigue C, Galmier MJ, Decombat C, et al. Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem. 2008;51:3133–44. https://doi.org/10.1021/jm701424g.PubMedCrossRefGoogle Scholar
  21. 21.
    Link E, Lukiewicz S. A new radioactive drug selectively accumulating in Melanoma cells. Eur J Nucl Med. 1982;7:469–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Link EM, Blower PJ, Costa DC, Lane DM, Lui D, Brown RS, et al. Early detection of melanoma metastases with radioiodinated methylene blue. Eur J Nucl Med. 1998;25:1322–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Link EM, Carpenter RN. 211At-methylene blue for targeted radiotherapy of human melanoma xenografts: treatment of cutaneous tumors and lymph node metastases. Cancer Res. 1992;52:4385–90.PubMedGoogle Scholar
  24. 24.
    Michelot JM, Moreau MF, Labarre PG, Madelmont JC, Veyre AJ, Papon JM, et al. Synthesis and evaluation of new iodine-125 radiopharmaceuticals as potential tracers for malignant melanoma. J Nucl Med: Off Publ Soc Nucl Med. 1991;32:1573–80.Google Scholar
  25. 25.
    El Aissi R, Chezal JM, Tarrit S, Chavignon O, Moreau E. Melanoma-targeted delivery system (part 1): design, synthesis and evaluation of releasable disulfide drug by glutathione. Eur J Med Chem. 2015;101:668–80. https://doi.org/10.1016/j.ejmech.2015.06.055.PubMedCrossRefGoogle Scholar
  26. 26.
    El Aissi R, Miladi I, Chezal JM, Chavignon O, Miot-Noirault E, Moreau E. Melanoma-targeted delivery system (part 2): Synthesis, radioiodination and biological evaluation in B16F0 bearing mice. Eur J Med Chem. 2016;120:304–12. https://doi.org/10.1016/j.ejmech.2016.05.019.PubMedCrossRefGoogle Scholar
  27. 27.
    Sillaire-Houtmann I, Bonafous J, Veyre A, Mestas D, D’Incan M, Moins N, et al. Phase 2 clinical study of 123I-N-(2-diethylaminoethyl)-2-iodobenzamide in the diagnostic of primary and metastatic ocular melanoma. J Fr Ophtalmol. 2004;27:34–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Michelot JM, Moreau MF, Veyre AJ, Bonafous JF, Bacin FJ, Madelmont JC, et al. Phase II scintigraphic clinical trial of malignant melanoma and metastases with iodine-123-N-(2-diethylaminoethyl 4-iodobenzamide). J Nucl Med: Off Publ Soc Nucl Med. 1993;34:1260–6.Google Scholar
  29. 29.
    Brandau W, Niehoff T, Pulawski P, Jonas M, Dutschka K, Sciuk J, et al. Structure distribution relationship of iodine-123-iodobenzamides as tracers for the detection of melanotic melanoma. J Nucl Med: Off Publ Soc Nucl Med. 1996;37:1865–71.Google Scholar
  30. 30.
    Moins N, D’Incan M, Bonafous J, Bacin F, Labarre P, Moreau MF, et al. 123I-N-(2-diethylaminoethyl)-2-iodobenzamide: a potential imaging agent for cutaneous melanoma staging. Eur J Nucl Med Mol Imaging. 2002;29:1478–84. https://doi.org/10.1007/s00259-002-0971-6.PubMedCrossRefGoogle Scholar
  31. 31.
    Dittmann H, Coenen HH, Zolzer F, Dutschka K, Brandau W, Streffer C. In vitro studies on the cellular uptake of melanoma imaging aminoalkyl-iodobenzamide derivatives (ABA). Nucl Med Biol. 1999;26:51–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Bacin F, Michelot J, Bonafous J, Veyre A, Moreau MF, Kemeny JL, et al. Clinical study of [123I] N-(2-diethylaminoethyl)-4-iodobenzamide in the diagnosis of primary and metastatic ocular melanoma. Acta Ophthalmol Scand. 1998;76:56–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Larisch R, Schulte KW, Vosberg H, Ruzicka T, Muller-Gartner HW. Differential accumulation of iodine-123-iodobenzamide in melanotic and amelanotic melanoma metastases in vivo. J Nucl Med: Off Publ Soc Nucl Med. 1998;39:996–1001.Google Scholar
  34. 34.
    Labarre P, Papon J, Moreau MF, Moins N, Veyre A, Madelmont JC. Evaluation in mice of some iodinated melanoma imaging agents using cryosectioning and multi-wire proportional counting. Eur J Nucl Med. 1999;26:494–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu X, Pham TQ, Berghofer P, Chapman J, Greguric I, Mitchell P, et al. Synthesis and evaluation of novel radioiodinated nicotinamides for malignant melanoma. Nucl Med Biol. 2008;35:769–81. https://doi.org/10.1016/j.nucmedbio.2008.05.011.PubMedCrossRefGoogle Scholar
  36. 36.
    Pham TQ, Berghofer P, Liu X, Greguric I, Dikic B, Ballantyne P, et al. Preparation and biologic evaluation of a novel radioiodinated benzylpiperazine, 123I-MEL037, for malignant melanoma. J Nucl Med: Off Publ Soc Nucl Med. 2007;48:1348–56. https://doi.org/10.2967/jnumed.107.041673.CrossRefGoogle Scholar
  37. 37.
    Roberts MP, Nguyen V, Ashford ME, Berghofer P, Wyatt NA, Krause-Heuer AM, et al. Synthesis and in Vivo Evaluation of [123I]Melanin-Targeted Agents. J Med Chem. 2015;58:6214–24. https://doi.org/10.1021/acs.jmedchem.5b00777.PubMedCrossRefGoogle Scholar
  38. 38.
    Chang CC, Chang CH, Shen CC, Chen CL, Liu RS, Lin MH, et al. Synthesis and characterization of a novel radioiodinated phenylacetamide and its homolog as theranostic agents for malignant melanoma. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2016;81:201–9. https://doi.org/10.1016/j.ejps.2015.10.019.CrossRefGoogle Scholar
  39. 39.
    Cachin F, Miot-Noirault E, Gillet B, Isnardi V, Labeille B, Payoux P, et al. (123)I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial. J Nucl Med: Off Publ Soc Nucl Med. 2014;55:15–22. https://doi.org/10.2967/jnumed.113.123554.CrossRefGoogle Scholar
  40. 40.
    Bonnet-Duquennoy M, Papon J, Mishellany F, Labarre P, Guerquin-Kern JL, Wu TD, et al. Targeted radionuclide therapy of melanoma: anti-tumoural efficacy studies of a new 131I labelled potential agent. Int J Cancer J Int Cancer. 2009;125:708–16. https://doi.org/10.1002/ijc.24413.CrossRefGoogle Scholar
  41. 41.
    Billaud EM, Maisonial-Besset A, Rbah-Vidal L, Vidal A, Besse S, Bequignat JB, et al. Synthesis, radiolabeling and preliminary in vivo evaluation of multimodal radiotracers for PET imaging and targeted radionuclide therapy of pigmented melanoma. Eur J Med Chem. 2015;92:818–38. https://doi.org/10.1016/j.ejmech.2015.01.034.PubMedCrossRefGoogle Scholar
  42. 42.
    Degoul F, Borel M, Jacquemot N, Besse S, Communal Y, Mishellany F, et al. In vivo efficacy of melanoma internal radionuclide therapy with a 131I-labelled melanin-targeting heteroarylcarboxamide molecule. Int J Cancer J Int Cancer. 2013;133:1042–53. https://doi.org/10.1002/ijc.28103.CrossRefGoogle Scholar
  43. 43.
    Billaud EM, Rbah-Vidal L, Vidal A, Besse S, Tarrit S, Askienazy S, et al. Synthesis, radiofluorination, and in vivo evaluation of novel fluorinated and iodinated radiotracers for PET imaging and targeted radionuclide therapy of melanoma. J Med Chem. 2013;56:8455–67. https://doi.org/10.1021/jm400877v.PubMedCrossRefGoogle Scholar
  44. 44.
    Chang CC, Chang CH, Shen CC, Chen CL, Liu RS, Lin MH, et al. Synthesis and evaluation of (1)(2)(3)/(1)(3)(1)I-Iochlonicotinamide as a novel SPECT probe for malignant melanoma. Bioorg Med Chem. 2015;23:2261–9. https://doi.org/10.1016/j.bmc.2015.02.017.PubMedCrossRefGoogle Scholar
  45. 45.
    Ren G, Miao Z, Liu H, Jiang L, Limpa-Amara N, Mahmood A, et al. Melanin-targeted preclinical PET imaging of melanoma metastasis. J Nucl Med: Off Publ Soc Nucl Med. 2009;50:1692–9. https://doi.org/10.2967/jnumed.109.066175.CrossRefGoogle Scholar
  46. 46.
    Wu SY, Huang SP, Lo YC, Liu RS, Wang SJ, Lin WJ, et al. Synthesis and preclinical characterization of [18F]FPBZA: a novel PET probe for melanoma. Biomed Res Int. 2014;2014:912498. https://doi.org/10.1155/2014/912498.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Garg PK, Nazih R, Wu Y, Singh R, Garg S. 4-11C-Methoxy N-(2-Diethylaminoethyl) Benzamide: A Novel Probe to Selectively Target Melanoma. J Nucl Med: Off Publ Soc Nucl Med. 2017;58:827–32. https://doi.org/10.2967/jnumed.116.184564.CrossRefGoogle Scholar
  48. 48.
    Greguric I, Taylor SR, Denoyer D, Ballantyne P, Berghofer P, Roselt P, et al. Discovery of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance. J Med Chem. 2009;52:5299–302. https://doi.org/10.1021/jm9008423.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu H, Liu S, Miao Z, Deng Z, Shen B, Hong X, et al. Development of 18F-labeled picolinamide probes for PET imaging of malignant melanoma. J Med Chem. 2013;56:895–901. https://doi.org/10.1021/jm301740k.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liu H, Liu S, Miao Z, Jiang H, Deng Z, Hong X, et al. A novel aliphatic 18F-labeled probe for PET imaging of melanoma. Mol Pharm. 2013;10:3384–91. https://doi.org/10.1021/mp400225s.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rbah-Vidal L, Vidal A, Besse S, Cachin F, Bonnet M, Audin L, et al. Early detection and longitudinal monitoring of experimental primary and disseminated melanoma using [(1)(0)F]ICF01006, a highly promising melanoma PET tracer. Eur J Nucl Med Mol Imaging. 2012;39:1449–61. https://doi.org/10.1007/s00259-012-2168-y.PubMedCrossRefGoogle Scholar
  52. 52.
    Feng H, Xia X, Li C, Song Y, Qin C, Liu Q, et al. Imaging malignant melanoma with (18)F-5-FPN. Eur J Nucl Med Mol Imaging. 2016;43:113–22. https://doi.org/10.1007/s00259-015-3134-2.PubMedCrossRefGoogle Scholar
  53. 53.
    Chang CC, Chang CH, Lo YH, Lin MH, Shen CC, Liu RS, et al. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma. Bioorg Med Chem Lett. 2016;26:4133–9. https://doi.org/10.1016/j.bmcl.2016.06.022.PubMedCrossRefGoogle Scholar
  54. 54.
    Denoyer D, Potdevin T, Roselt P, Neels OC, Kirby L, Greguric I, et al. Improved detection of regional melanoma metastasis using 18F-6-fluoro-N-[2-(diethylamino)ethyl] pyridine-3-carboxamide, a melanin-specific PET probe, by perilesional administration. J Nucl Med: Off Publ Soc Nucl Med. 2011;52:115–22. https://doi.org/10.2967/jnumed.110.078154.CrossRefGoogle Scholar
  55. 55.
    Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med: Off Publ Soc Nucl Med. 2007;48:1741–8. https://doi.org/10.2967/jnumed.107.040378.CrossRefGoogle Scholar
  56. 56.
    Trencsenyi G, Denes N, Nagy G, Kis A, Vida A, Farkas F, et al. Comparative preclinical evaluation of 68Ga-NODAGA and 68Ga-HBED-CC conjugated procainamide in melanoma imaging. J Pharm Biomed Anal. 2017;139:54–64. https://doi.org/10.1016/j.jpba.2017.02.049.PubMedCrossRefGoogle Scholar
  57. 57.
    Kertesz I, Vida A, Nagy G, Emri M, Farkas A, Kis A, et al. In Vivo Imaging of Experimental Melanoma Tumors using the Novel Radiotracer 68Ga-NODAGA-Procainamide (PCA). J Cancer. 2017;8:774–85. https://doi.org/10.7150/jca.17550.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang J, Wei C, Noor R, Burke A, McIntyre S, Bedikian AY. Surveillance for brain metastases in patients receiving systemic therapy for advanced melanoma. Melanoma Res. 2014;24:54–60. https://doi.org/10.1097/CMR.0000000000000022.PubMedCrossRefGoogle Scholar
  59. 59.
    Aukema TS, Valdes Olmos RA, Wouters MW, Klop WM, Kroon BB, Vogel WV, et al. Utility of preoperative 18F-FDG PET/CT and brain MRI in melanoma patients with palpable lymph node metastases. Ann Surg Oncol. 2010;17:2773–8. https://doi.org/10.1245/s10434-010-1088-y.PubMedCrossRefGoogle Scholar
  60. 60.
    Belhocine TZ, Scott AM, Even-Sapir E, Urbain JL, Essner R. Role of nuclear medicine in the management of cutaneous malignant melanoma. J Nucl Med: Off Publ Soc Nucl Med. 2006;47:957–67.Google Scholar
  61. 61.
    Unterrainer M, Galldiks N, Suchorska B, Kowalew LC, Wenter V, Schmid-Tannwald C, et al. 18F-FET PET Uptake Characteristics in Patients with Newly Diagnosed and Untreated Brain Metastasis. J Nucl Med: Off Publ Soc Nucl Med. 2017;58:584–9. https://doi.org/10.2967/jnumed.116.180075.CrossRefGoogle Scholar
  62. 62.
    Valdes Olmos RA, Vidal-Sicart S, Manca G, Mariani G, Leon-Ramirez LF, Rubello D, et al. Advances in radioguided surgery in oncology. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med (AIMN) [and] Int Assoc Radiopharmacology (IAR), [and] Sect So. 2017;61:247–70. 10.23736/S1824-4785.17.02995-8.Google Scholar
  63. 63.
    Bronstein Y, Ng CS, Rohren E, Ross MI, Lee JE, Cormier J, et al. PET/CT in the management of patients with stage IIIC and IV metastatic melanoma considered candidates for surgery: evaluation of the additive value after conventional imaging. AJR Am J Roentgenol. 2012;198:902–8. https://doi.org/10.2214/AJR.11.7280.PubMedCrossRefGoogle Scholar
  64. 64.
    Garg S, Kothari K, Thopate SR, Doke AK, Garg PK. Design, synthesis, and preliminary in vitro and in vivo evaluation of N-(2-diethylaminoethyl)-4-[18F]fluorobenzamide ([18F]-DAFBA): a novel potential PET probe to image melanoma tumors. Bioconjug Chem. 2009;20:583–90. https://doi.org/10.1021/bc8005094.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wang Y, Li M, Zhang Y, Zhang F, Liu C, Song Y, et al. Detection of melanoma metastases with PET-Comparison of 18F-5-FPN with 18F-FDG. Nucl Med Biol. 2017;50:33–8. https://doi.org/10.1016/j.nucmedbio.2017.03.005.PubMedCrossRefGoogle Scholar
  66. 66.
    Denoyer D, Greguric I, Roselt P, Neels OC, Aide N, Taylor SR, et al. High-contrast PET of melanoma using (18)F-MEL050, a selective probe for melanin with predominantly renal clearance. J Nucl Med: Off Publ Soc Nucl Med. 2010;51:441–7. https://doi.org/10.2967/jnumed.109.070060.CrossRefGoogle Scholar
  67. 67.
    Xie L, Yui J, Fujinaga M, Hatori A, Yamasaki T, Kumata K, et al. Molecular imaging of ectopic metabotropic glutamate 1 receptor in melanoma with a positron emission tomography radioprobe (18) F-FITM. Int J Cancer J Int Cancer. 2014;135:1852–9. https://doi.org/10.1002/ijc.28842.CrossRefGoogle Scholar
  68. 68.
    Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev. 2017;110-111:38–51. https://doi.org/10.1016/j.addr.2016.06.007.PubMedCrossRefGoogle Scholar
  69. 69.
    Singh M, Mukhopadhyay K. Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed Res Int. 2014;2014:874610. https://doi.org/10.1155/2014/874610.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Chen J, Cheng Z, Hoffman TJ, Jurisson SS, Quinn TP. Melanoma-targeting properties of (99m)technetium-labeled cyclic alpha-melanocyte-stimulating hormone peptide analogues. Cancer Res. 2000;60:5649–58.PubMedGoogle Scholar
  71. 71.
    Siegrist W, Oestreicher M, Stutz S, Girard J, Eberle AN. Radioreceptor assay for alpha-MSH using mouse B16 melanoma cells+. J Recept Res. 1988;8:323–43.PubMedCrossRefGoogle Scholar
  72. 72.
    Garg PK, Alston KL, Welsh PC, Zalutsky MR. Enhanced binding and inertness to dehalogenation of alpha-melanotropic peptides labeled using N-succinimidyl 3-iodobenzoate. Bioconjug Chem. 1996;7:233–9. https://doi.org/10.1021/bc960001+.PubMedCrossRefGoogle Scholar
  73. 73.
    Vaidyanathan G, Zalutsky MR. Fluorine-18-labeled [Nle4,D-Phe7]-alpha-MSH, an alpha-melanocyte stimulating hormone analogue. Nucl Med Biol. 1997;24:171–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Cowell SM, Balse-Srinivasan PM, Ahn JM, Hruby VJ. Design and synthesis of peptide antagonists and inverse agonists for G protein-coupled receptors. Methods Enzymol. 2002;343:49–72.PubMedCrossRefGoogle Scholar
  75. 75.
    Sawyer TK, Sanfilippo PJ, Hruby VJ, Engel MH, Heward CB, Burnett JB, et al. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity. Proc Natl Acad Sci U S A. 1980;77:5754–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hruby VJ, Wilkes BC, Hadley ME, Al-Obeidi F, Sawyer TK, Staples DJ, et al. alpha-Melanotropin: the minimal active sequence in the frog skin bioassay. J Med Chem. 1987;30:2126–30.PubMedCrossRefGoogle Scholar
  77. 77.
    Giblin MF, Wang N, Hoffman TJ, Jurisson SS, Quinn TP. Design and characterization of alpha-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination. Proc Natl Acad Sci U S A. 1998;95:12814–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Froidevaux S, Calame-Christe M, Tanner H, Eberle AN. Melanoma targeting with DOTA-alpha-melanocyte-stimulating hormone analogs: structural parameters affecting tumor uptake and kidney uptake. J Nucl Med: Off Publ Soc Nucl Med. 2005;46:887–95.Google Scholar
  79. 79.
    Bednarek MA, Silva MV, Arison B, MacNeil T, Kalyani RN, Huang RR, et al. Structure-function studies on the cyclic peptide MT-II, lactam derivative of alpha-melanotropin. Peptides. 1999;20:401–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Grieco P, Cai M, Liu L, Mayorov A, Chandler K, Trivedi D, et al. Design and microwave-assisted synthesis of novel macrocyclic peptides active at melanocortin receptors: discovery of potent and selective hMC5R receptor antagonists. J Med Chem. 2008;51:2701–7. https://doi.org/10.1021/jm701181n.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Miao Y, Gallazzi F, Guo H, Quinn TP. 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide analogues for melanoma imaging. Bioconjug Chem. 2008;19:539–47. https://doi.org/10.1021/bc700317w.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Guo H, Yang J, Gallazzi F, Miao Y. Reduction of the ring size of radiolabeled lactam bridge-cyclized alpha-MSH peptide, resulting in enhanced melanoma uptake. J Nucl Med: Off Publ Soc Nucl Med. 2010;51:418–26. https://doi.org/10.2967/jnumed.109.071787.CrossRefGoogle Scholar
  83. 83.
    Barkey NM, Tafreshi NK, Josan JS, De Silva CR, Sill KN, Hruby VJ, et al. Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specific ligand. J Med Chem. 2011;54:8078–84. https://doi.org/10.1021/jm201226w.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tafreshi NK, Huang X, Moberg VE, Barkey NM, Sondak VK, Tian H, et al. Synthesis and characterization of a melanoma-targeted fluorescence imaging probe by conjugation of a melanocortin 1 receptor (MC1R) specific ligand. Bioconjug Chem. 2012;23:2451–9. https://doi.org/10.1021/bc300549s.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    McQuade P, Miao Y, Yoo J, Quinn TP, Welch MJ, Lewis JS. Imaging of melanoma using 64Cu- and 86Y-DOTA-ReCCMSH(Arg11), a cyclized peptide analogue of alpha-MSH. J Med Chem. 2005;48:2985–92. https://doi.org/10.1021/jm0490282.PubMedCrossRefGoogle Scholar
  86. 86.
    Wei L, Butcher C, Miao Y, Gallazzi F, Quinn TP, Welch MJ, et al. Synthesis and biologic evaluation of 64Cu-labeled rhenium-cyclized alpha-MSH peptide analog using a cross-bridged cyclam chelator. J Nucl Med: Off Publ Soc Nucl Med. 2007;48:64–72.Google Scholar
  87. 87.
    Wei L, Miao Y, Gallazzi F, Quinn TP, Welch MJ, Vavere AL, et al. Gallium-68-labeled DOTA-rhenium-cyclized alpha-melanocyte-stimulating hormone analog for imaging of malignant melanoma. Nucl Med Biol. 2007;34:945–53. https://doi.org/10.1016/j.nucmedbio.2007.07.003.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ren G, Liu Z, Miao Z, Liu H, Subbarayan M, Chin FT, et al. PET of malignant melanoma using 18F-labeled metallopeptides. J Nucl Med: Off Publ Soc Nucl Med. 2009;50:1865–72. https://doi.org/10.2967/jnumed.109.062877.CrossRefGoogle Scholar
  89. 89.
    Ren G, Liu S, Liu H, Miao Z, Cheng Z. Radiofluorinated rhenium cyclized alpha-MSH analogues for PET imaging of melanocortin receptor 1. Bioconjug Chem. 2010;21:2355–60. https://doi.org/10.1021/bc100391a.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Guo H, Shenoy N, Gershman BM, Yang J, Sklar LA, Miao Y. Metastatic melanoma imaging with an (111)In-labeled lactam bridge-cyclized alpha-melanocyte-stimulating hormone peptide. Nucl Med Biol. 2009;36:267–76. https://doi.org/10.1016/j.nucmedbio.2009.01.003.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Guo H, Gallazzi F, Miao Y. Gallium-67-labeled lactam bridge-cyclized alpha-MSH peptides with enhanced melanoma uptake and reduced renal uptake. Bioconjug Chem. 2012;23:1341–8. https://doi.org/10.1021/bc300191z.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Guo H, Miao Y. Introduction of an 8-aminooctanoic acid linker enhances uptake of 99mTc-labeled lactam bridge-cyclized alpha-MSH peptide in melanoma. J Nucl Med: Off Publ Soc Nucl Med. 2014;55:2057–63. https://doi.org/10.2967/jnumed.114.145896.CrossRefGoogle Scholar
  93. 93.
    Guo H, Miao Y. Cu-64-labeled lactam bridge-cyclized alpha-MSH peptides for PET imaging of melanoma. Mol Pharm. 2012;9:2322–30. https://doi.org/10.1021/mp300246j.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Guo H, Gallazzi F, Miao Y. Design and evaluation of new Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptides for melanoma imaging. Mol Pharm. 2013;10:1400–8. https://doi.org/10.1021/mp3006984.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Nagy G, Denes N, Kis A, Szabo JP, Berenyi E, Garai I, et al. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific 68Ga- and 44Sc-labeled DOTA-NAPamide in melanoma imaging. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2017;106:336–44. https://doi.org/10.1016/j.ejps.2017.06.026.CrossRefGoogle Scholar
  96. 96.
    Cheng Z, Xiong Z, Subbarayan M, Chen X, Gambhir SS. 64Cu-labeled alpha-melanocyte-stimulating hormone analog for microPET imaging of melanocortin 1 receptor expression. Bioconjug Chem. 2007;18:765–72. https://doi.org/10.1021/bc060306g.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, et al. A gallium-labeled DOTA-alpha-melanocyte- stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med: Off Publ Soc Nucl Med. 2004;45:116–23.Google Scholar
  98. 98.
    Cheng Z, Zhang L, Graves E, Xiong Z, Dandekar M, Chen X, et al. Small-animal PET of melanocortin 1 receptor expression using a 18F-labeled alpha-melanocyte-stimulating hormone analog. J Nucl Med: Off Publ Soc Nucl Med. 2007;48:987–94. https://doi.org/10.2967/jnumed.107.039602.CrossRefGoogle Scholar
  99. 99.
    Cheng Z, Chen J, Miao Y, Owen NK, Quinn TP, Jurisson SS. Modification of the structure of a metallopeptide: synthesis and biological evaluation of (111)In-labeled DOTA-conjugated rhenium-cyclized alpha-MSH analogues. J Med Chem. 2002;45:3048–56.PubMedCrossRefGoogle Scholar
  100. 100.
    Miao Y, Benwell K, Quinn TP. 99mTc- and 111In-labeled alpha-melanocyte-stimulating hormone peptides as imaging probes for primary and pulmonary metastatic melanoma detection. J Nucl Med: Off Publ Soc Nucl Med. 2007;48:73–80.Google Scholar
  101. 101.
    Quinn T, Zhang X, Miao Y. Targeted melanoma imaging and therapy with radiolabeled alpha-melanocyte stimulating hormone peptide analogues. G Ital Dermatol Venereol: Organo Ufficiale Soc Ital Dermatol Sifilografia. 2010;145:245–58.Google Scholar
  102. 102.
    Zhang C, Zhang Z, Lin KS, Pan J, Dude I, Hundal-Jabal N, et al. Preclinical Melanoma Imaging with 68Ga-Labeled alpha-Melanocyte-Stimulating Hormone Derivatives Using PET. Theranostics. 2017;7:805–13. https://doi.org/10.7150/thno.17117.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Pohle K, Notni J, Bussemer J, Kessler H, Schwaiger M, Beer AJ. 68Ga-NODAGA-RGD is a suitable substitute for (18)F-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl Med Biol. 2012;39:777–84. https://doi.org/10.1016/j.nucmedbio.2012.02.006.PubMedCrossRefGoogle Scholar
  104. 104.
    Notni J, Pohle K, Wester HJ. Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of (6)(8)Ga-TRAP(RGD)(3). Nucl Med Biol. 2013;40:33–41. https://doi.org/10.1016/j.nucmedbio.2012.08.006.PubMedCrossRefGoogle Scholar
  105. 105.
    Simecek J, Hermann P, Wester HJ, Notni J. How is (68)Ga labeling of macrocyclic chelators influenced by metal ion contaminants in (68)Ge/(68)Ga generator eluates? ChemMedChem. 2013;8:95–103. https://doi.org/10.1002/cmdc.201200471.PubMedCrossRefGoogle Scholar
  106. 106.
    Simecek J, Notni J, Kapp TG, Kessler H, Wester HJ. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of (68)Ga-NOPO-c(RGDfK). Mol Pharm. 2014;11:1687–95. https://doi.org/10.1021/mp5000746.PubMedCrossRefGoogle Scholar
  107. 107.
    Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans. 2016;45:15702–24. https://doi.org/10.1039/c5dt04706d.PubMedCrossRefGoogle Scholar
  108. 108.
    Chakravarty R, Goel S, Valdovinos HF, Hernandez R, Hong H, Nickles RJ, et al. Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment. Bioconjug Chem. 2014;25:2197–204. https://doi.org/10.1021/bc500415x.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hernandez R, Valdovinos HF, Yang Y, Chakravarty R, Hong H, Barnhart TE, et al. (44)Sc: an attractive isotope for peptide-based PET imaging. Molecular pharmaceutics. 2014;11:2954–2961. doi:https://doi.org/10.1021/mp500343j.
  110. 110.
    Margadant C, Monsuur HN, Norman JC, Sonnenberg A. Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol. 2011;23:607–14. https://doi.org/10.1016/j.ceb.2011.08.005.PubMedCrossRefGoogle Scholar
  111. 111.
    Decristoforo C, Faintuch-Linkowski B, Rey A, von Guggenberg E, Rupprich M, Hernandez-Gonzales I, et al. [99mTc]HYNIC-RGD for imaging integrin alphavbeta3 expression. Nucl Med Biol. 2006;33:945–52. https://doi.org/10.1016/j.nucmedbio.2006.09.001.PubMedCrossRefGoogle Scholar
  112. 112.
    Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M, Virgolini I, et al. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging. 2008;35:1507–15. https://doi.org/10.1007/s00259-008-0757-6.PubMedCrossRefGoogle Scholar
  113. 113.
    Hultsch C, Schottelius M, Auernheimer J, Alke A, Wester HJ. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK). Eur J Nucl Med Mol Imaging. 2009;36:1469–74. https://doi.org/10.1007/s00259-009-1122-0.PubMedCrossRefGoogle Scholar
  114. 114.
    Wei L, Ye Y, Wadas TJ, Lewis JS, Welch MJ, Achilefu S, et al. (64)Cu-labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. Nucl Med Biol. 2009;36:277–85. https://doi.org/10.1016/j.nucmedbio.2008.12.008.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Jin ZH, Furukawa T, Kumata K, Xie L, Yui J, Wakizaka H, et al. Development of the Fibronectin-Mimetic Peptide KSSPHSRN(SG)5RGDSP as a Novel Radioprobe for Molecular Imaging of the Cancer Biomarker alpha5beta1 Integrin. Biol Pharm Bull. 2015;38:1722–31. https://doi.org/10.1248/bpb.b15-00344.PubMedCrossRefGoogle Scholar
  116. 116.
    Mena E, Owenius R, Turkbey B, Sherry R, Bratslavsky G, Macholl S, et al. [(1)(8)F]fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing alphavbeta 3 and alpha vbeta 5 integrins. Eur J Nucl Med Mol Imaging. 2014;41:1879–88. https://doi.org/10.1007/s00259-014-2791-x.PubMedCrossRefGoogle Scholar
  117. 117.
    Sharma R, Kallur KG, Ryu JS, Parameswaran RV, Lindman H, Avril N, et al. Multicenter Reproducibility of 18F-Fluciclatide PET Imaging in Subjects with Solid Tumors. J Nucl Med: Off Publ Soc Nucl Med. 2015;56:1855–61. https://doi.org/10.2967/jnumed.115.158253.CrossRefGoogle Scholar
  118. 118.
    Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med: Off Publ Soc Nucl Med. 2005;46:1333–41.Google Scholar
  119. 119.
    Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clini Cancer Res: Off J Am Assoc Cancer Res. 2006;12:3942–9. https://doi.org/10.1158/1078-0432.CCR-06-0266.CrossRefGoogle Scholar
  120. 120.
    Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S126–38. https://doi.org/10.1007/s00259-011-2028-1.PubMedCrossRefGoogle Scholar
  121. 121.
    Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med: Off Publ Soc Nucl Med. 2008;49(Suppl 2):113S–28S. https://doi.org/10.2967/jnumed.107.045922.CrossRefGoogle Scholar
  122. 122.
    Knetsch PA, Petrik M, Rangger C, Seidel G, Pietzsch HJ, Virgolini I, et al. [(6)(8)Ga]NS(3)-RGD and [(6)(8)Ga] Oxo-DO3A-RGD for imaging alpha(v)beta(3) integrin expression: synthesis, evaluation, and comparison. Nucl Med Biol. 2013;40:65–72. https://doi.org/10.1016/j.nucmedbio.2012.09.006.PubMedCrossRefGoogle Scholar
  123. 123.
    Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, et al. [68Ga]NODAGA-RGD for imaging alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging. 2011;38:1303–12. https://doi.org/10.1007/s00259-011-1778-0.PubMedCrossRefGoogle Scholar
  124. 124.
    Knetsch PA, Zhai C, Rangger C, Blatzer M, Haas H, Kaeopookum P, et al. [(68)Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging alphavbeta3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl Med Biol. 2015;42:115–22. https://doi.org/10.1016/j.nucmedbio.2014.10.001.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zhai C, Summer D, Rangger C, Haas H, Haubner R, Decristoforo C. Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68. J Label Compd Radiopharm. 2015;58:209–14. https://doi.org/10.1002/jlcr.3286.CrossRefGoogle Scholar
  126. 126.
    Zhai C, Summer D, Rangger C, Franssen GM, Laverman P, Haas H, et al. Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates. Mol Pharm. 2015;12:2142–50. https://doi.org/10.1021/acs.molpharmaceut.5b00128.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Petrik M, Zhai C, Novy Z, Urbanek L, Haas H, Decristoforo C. In Vitro and In Vivo Comparison of Selected Ga-68 and Zr-89 Labelled Siderophores. Mol Imaging Biol: MIB : Off Publ Acad Mol Imaging. 2016;18:344–52. https://doi.org/10.1007/s11307-015-0897-6.CrossRefGoogle Scholar
  128. 128.
    Zhai C, Franssen GM, Petrik M, Laverman P, Summer D, Rangger C, et al. Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [(68)Ga]NODAGA-RGD-In Vivo Imaging Studies in Human Xenograft Tumors. Mol Imaging Biol: MIB: Off Publ Acad Mol Imaging. 2016;18:758–67. https://doi.org/10.1007/s11307-016-0931-3.CrossRefGoogle Scholar
  129. 129.
    Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem. 2002;13:530–41.PubMedCrossRefGoogle Scholar
  130. 130.
    Simecek J, Schulz M, Notni J, Plutnar J, Kubicek V, Havlickova J, et al. Complexation of metal ions with TRAP (1,4,7-triazacyclononane phosphinic acid) ligands and 1,4,7-triazacyclononane-1,4,7-triacetic acid: phosphinate-containing ligands as unique chelators for trivalent gallium. Inorg Chem. 2012;51:577–90. https://doi.org/10.1021/ic202103v.PubMedCrossRefGoogle Scholar
  131. 131.
    Notni J, Simecek J, Hermann P, Wester HJ. TRAP, a powerful and versatile framework for gallium-68 radiopharmaceuticals. Chem (Weinheim Bergstr Ger). 2011;17:14718–22. https://doi.org/10.1002/chem.201103503.Google Scholar
  132. 132.
    Notni J, Pohle K, Wester HJ. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res. 2012;2:28. https://doi.org/10.1186/2191-219X-2-28.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Neubauer S, Rechenmacher F, Beer AJ, Curnis F, Pohle K, D’Alessandria C, et al. Selective imaging of the angiogenic relevant integrins alpha5beta1 and alphavbeta3. Angew Chem (Int Engl). 2013;52:11656–9. https://doi.org/10.1002/anie.201306376.CrossRefGoogle Scholar
  134. 134.
    Heckmann D, Meyer A, Laufer B, Zahn G, Stragies R, Kessler H. Rational design of highly active and selective ligands for the alpha5beta1 integrin receptor. Chembiochem : Eur J Chem Biol. 2008;9:1397–407. https://doi.org/10.1002/cbic.200800045.CrossRefGoogle Scholar
  135. 135.
    Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol. 1994;124:373–80.PubMedCrossRefGoogle Scholar
  136. 136.
    Haubner R, Maschauer S, Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed Res Int. 2014;2014:871609. https://doi.org/10.1155/2014/871609.PubMedPubMedCentralGoogle Scholar
  137. 137.
    D’Alessandria C, Pohle K, Rechenmacher F, Neubauer S, Notni J, Wester HJ, et al. In vivo biokinetic and metabolic characterization of the (6)(8)Ga-labelled alpha5beta1-selective peptidomimetic FR366. Eur J Nucl Med Mol Imaging. 2016;43:953–63. https://doi.org/10.1007/s00259-015-3218-z.PubMedCrossRefGoogle Scholar
  138. 138.
    Notni J, Steiger K, Hoffmann F, Reich D, Kapp TG, Rechenmacher F, et al. Complementary, Selective PET Imaging of Integrin Subtypes alpha5beta1 and alphavbeta3 Using 68Ga-Aquibeprin and 68Ga-Avebetrin. J Nucl Med: Off Publ Soc Nucl Med. 2016;57:460–6. https://doi.org/10.2967/jnumed.115.165720.CrossRefGoogle Scholar
  139. 139.
    Notni J, Steiger K, Hoffmann F, Reich D, Schwaiger M, Kessler H, et al. Variation of Specific Activities of 68Ga-Aquibeprin and 68Ga-Avebetrin Enables Selective PET Imaging of Different Expression Levels of Integrins alpha5beta1 and alphavbeta3. J Nucl Med: Off Publ Soc Nucl Med. 2016;57:1618–24. https://doi.org/10.2967/jnumed.116.173948.CrossRefGoogle Scholar
  140. 140.
    Bianchini F, Fabbrizzi P, Menchi G, Raspanti S, Bottoncetti A, Passeri A, et al. Radiosynthesis and micro-SPECT analysis of triazole-based RGD integrin ligands as non-peptide molecular imaging probes for angiogenesis. Bioorg Med Chem. 2015;23:1112–22. https://doi.org/10.1016/j.bmc.2014.12.065.PubMedCrossRefGoogle Scholar
  141. 141.
    Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. alphavbeta3- or alpha5beta1-Integrin-Selective Peptidomimetics for Surface Coating. Angew Chem (Int Engl). 2016;55:7048–67. https://doi.org/10.1002/anie.201509782.CrossRefGoogle Scholar
  142. 142.
    Haskali MB, Denoyer D, Noonan W, Culinane C, Rangger C, Pouliot N, et al. Sulfonation of Tyrosine as a Method To Improve Biodistribution of Peptide-Based Radiotracers: Novel 18F-Labeled Cyclic RGD Analogues. Mol Pharm. 2017;14:1169–80. https://doi.org/10.1021/acs.molpharmaceut.6b01062.PubMedCrossRefGoogle Scholar
  143. 143.
    Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, et al. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy. Theranostics. 2016;6:1672–82. https://doi.org/10.7150/thno.16135.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Melemenidis S, Jefferson A, Ruparelia N, Akhtar AM, Xie J, Allen D, et al. Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics. 2015;5:515–29. https://doi.org/10.7150/thno.10319.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Fan Q, Cheng K, Hu X, Ma X, Zhang R, Yang M, et al. Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. J Am Chem Soc. 2014;136:15185–94. https://doi.org/10.1021/ja505412p.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Li C, Wang W, Wu Q, Ke S, Houston J, Sevick-Muraca E, et al. Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol. 2006;33:349–58. https://doi.org/10.1016/j.nucmedbio.2006.01.001.PubMedCrossRefGoogle Scholar
  147. 147.
    Yang J, Guo H, Gallazzi F, Berwick M, Padilla RS, Miao Y. Evaluation of a novel Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptide for potential melanoma therapy. Bioconjug Chem. 2009;20:1634–42. https://doi.org/10.1021/bc9001954.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Yang J, Guo H, Miao Y. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nucl Med Biol. 2010;37:873–83. https://doi.org/10.1016/j.nucmedbio.2010.05.006.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Yang J, Miao Y. Substitution of Gly with Ala enhanced the melanoma uptake of technetium-99m-labeled Arg-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptide. Bioorg Med Chem Lett. 2012;22:1541–5. https://doi.org/10.1016/j.bmcl.2012.01.003.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Flook AM, Yang J, Miao Y. Evaluation of new Tc-99m-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone peptides for melanoma imaging. Mol Pharm. 2013;10:3417–24. https://doi.org/10.1021/mp400248f.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Flook AM, Yang J, Miao Y. Effects of amino acids on melanoma targeting and clearance properties of Tc-99m-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone peptides. J Med Chem. 2013;56:8793–802. https://doi.org/10.1021/jm4012356.PubMedCrossRefGoogle Scholar
  152. 152.
    Yang J, Flook AM, Feng C, Miao Y. Linker modification reduced the renal uptake of technetium-99m-labeled Arg-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptide. Bioorg Med Chem Lett. 2014;24:195–8. https://doi.org/10.1016/j.bmcl.2013.11.042.PubMedCrossRefGoogle Scholar
  153. 153.
    Yang J, Guo H, Padilla RS, Berwick M, Miao Y. Replacement of the Lys linker with an Arg linker resulting in improved melanoma uptake and reduced renal uptake of Tc-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptide. Bioorg Med Chem. 2010;18:6695–700. https://doi.org/10.1016/j.bmc.2010.07.061.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Yang J, Lu J, Miao Y. Structural modification on the Lys linker enhanced tumor to kidney uptake ratios of 99mTc-labeled RGD-conjugated alpha-MSH hybrid peptides. Mol Pharm. 2012;9:1418–24. https://doi.org/10.1021/mp2006642.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Xu J, Yang J, Miao Y. Dual receptor-targeting (9)(9)mTc-labeled Arg-Gly-Asp-conjugated Alpha-Melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nucl Med Biol. 2015;42:369–74. https://doi.org/10.1016/j.nucmedbio.2014.11.002.PubMedCrossRefGoogle Scholar
  156. 156.
    Yang J, Hu CA, Miao Y. Tc-99m-labeled RGD-conjugated alpha-melanocyte stimulating hormone hybrid peptides with reduced renal uptake. Amino Acids. 2015;47:813–23. https://doi.org/10.1007/s00726-014-1911-z.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Flook AM, Yang J, Miao Y. Substitution of the Lys linker with the beta-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptides. J Med Chem. 2014;57:9010–8. https://doi.org/10.1021/jm501114v.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature. 2000;407:971–7. https://doi.org/10.1038/35039564.PubMedCrossRefGoogle Scholar
  159. 159.
    Namkoong J, Shin SS, Lee HJ, Marin YE, Wall BA, Goydos JS, et al. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res. 2007;67:2298–305. https://doi.org/10.1158/0008-5472.CAN-06-3665.PubMedCrossRefGoogle Scholar
  160. 160.
    Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A, et al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet. 2003;34:108–12. https://doi.org/10.1038/ng1148.PubMedCrossRefGoogle Scholar
  161. 161.
    Ohtani Y, Harada T, Funasaka Y, Nakao K, Takahara C, Abdel-Daim M, et al. Metabotropic glutamate receptor subtype-1 is essential for in vivo growth of melanoma. Oncogene. 2008;27:7162–70. https://doi.org/10.1038/onc.2008.329.PubMedCrossRefGoogle Scholar
  162. 162.
    Shin SS, Namkoong J, Wall BA, Gleason R, Lee HJ, Chen S. Oncogenic activities of metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell Melanoma Res. 2008;21:368–78. https://doi.org/10.1111/j.1755-148X.2008.00452.x.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Gelb T, Pshenichkin S, Rodriguez OC, Hathaway HA, Grajkowska E, DiRaddo JO, et al. Metabotropic glutamate receptor 1 acts as a dependence receptor creating a requirement for glutamate to sustain the viability and growth of human melanomas. Oncogene. 2015;34:2711–20. https://doi.org/10.1038/onc.2014.231.PubMedCrossRefGoogle Scholar
  164. 164.
    Yamasaki T, Fujinaga M, Maeda J, Kawamura K, Yui J, Hatori A, et al. Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM. Eur J Nucl Med Mol Imaging. 2012;39:632–41. https://doi.org/10.1007/s00259-011-1995-6.PubMedCrossRefGoogle Scholar
  165. 165.
    Yamasaki T, Fujinaga M, Kawamura K, Yui J, Hatori A, Ohya T, et al. In vivo measurement of the affinity and density of metabotropic glutamate receptor subtype 1 in rat brain using 18F-FITM in small-animal PET. J Nucl Med: Off Publ Soc Nucl Med. 2012;53:1601–7. https://doi.org/10.2967/jnumed.112.105908.CrossRefGoogle Scholar
  166. 166.
    Fujinaga M, Xie L, Yamasaki T, Yui J, Shimoda Y, Hatori A, et al. Synthesis and evaluation of 4-halogeno-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-[11C]methy lbenzamide for imaging of metabotropic glutamate 1 receptor in melanoma. J Med Chem. 2015;58:1513–23. https://doi.org/10.1021/jm501845n.PubMedCrossRefGoogle Scholar
  167. 167.
    Beaino W, Anderson CJ. PET imaging of very late antigen-4 in melanoma: comparison of 68Ga- and 64Cu-labeled NODAGA and CB-TE1A1P-LLP2A conjugates. J Nucl Med: Off Publ Soc Nucl Med. 2014;55:1856–63. https://doi.org/10.2967/jnumed.114.144881.CrossRefGoogle Scholar
  168. 168.
    Giglio BC, Fei H, Wang M, Wang H, He L, Feng H, et al. Synthesis of 5-[18F]Fluoro-alpha-methyl Tryptophan: New Trp Based PET Agents. Theranostics. 2017;7:1524–30. https://doi.org/10.7150/thno.19371.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Kuphal S, Bauer R, Bosserhoff AK. Integrin signaling in malignant melanoma. Cancer Metastasis Rev. 2005;24:195–222. https://doi.org/10.1007/s10555-005-1572-1.PubMedCrossRefGoogle Scholar
  170. 170.
    Peng L, Liu R, Marik J, Wang X, Takada Y, Lam KS. Combinatorial chemistry identifies high-affinity peptidomimetics against alpha4beta1 integrin for in vivo tumor imaging. Nat Chem Biol. 2006;2:381–9. https://doi.org/10.1038/nchembio798.PubMedCrossRefGoogle Scholar
  171. 171.
    Walker D, Li Y, Roxin A, Schaffer P, Adam MJ, Perrin DM. Facile synthesis and 18F-radiolabeling of alpha4beta1-specific LLP2A-aryltrifluoroborate peptidomimetic conjugates. Bioorg Med Chem Lett. 2016;26:5126–31. https://doi.org/10.1016/j.bmcl.2016.08.011.PubMedCrossRefGoogle Scholar
  172. 172.
    Shokeen M, Zheleznyak A, Wilson JM, Jiang M, Liu R, Ferdani R, et al. Molecular imaging of very late antigen-4 (alpha4beta1 integrin) in the premetastatic niche. J Nucl Med: Off Publ Soc Nucl Med. 2012;53:779–86. https://doi.org/10.2967/jnumed.111.100073.CrossRefGoogle Scholar
  173. 173.
    Jiang M, Ferdani R, Shokeen M, Anderson CJ. Comparison of two cross-bridged macrocyclic chelators for the evaluation of 64Cu-labeled-LLP2A, a peptidomimetic ligand targeting VLA-4-positive tumors. Nucl Med Biol. 2013;40:245–51. https://doi.org/10.1016/j.nucmedbio.2012.10.010.PubMedCrossRefGoogle Scholar
  174. 174.
    Gai Y, Sun L, Hui W, Ouyang Q, Anderson CJ, Xiang G, et al. New Bifunctional Chelator p-SCN-PhPr-NE3TA for Copper-64: Synthesis, Peptidomimetic Conjugation, Radiolabeling, and Evaluation for PET Imaging. Inorg Chem. 2016;55:6892–901. https://doi.org/10.1021/acs.inorgchem.6b00395.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Beaino W, Nedrow JR, Anderson CJ. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-Targeted PET Imaging and Treatment of Metastatic Melanoma. Mol Pharm. 2015;12:1929–38. https://doi.org/10.1021/mp5006917.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Redman JM, Gibney GT, Atkins MB. Advances in immunotherapy for melanoma. BMC Med. 2016;14:20. https://doi.org/10.1186/s12916-016-0571-0.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Mondanelli G, Ugel S, Grohmann U, Bronte V. The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Curr Opin Pharmacol. 2017;35:30–9. https://doi.org/10.1016/j.coph.2017.05.002.PubMedCrossRefGoogle Scholar
  178. 178.
    Munn DH, Mellor AL. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol. 2016;37:193–207. https://doi.org/10.1016/j.it.2016.01.002.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Xin Y, Cai H. Improved Radiosynthesis and Biological Evaluations of L- and D-1-[18F]Fluoroethyl-Tryptophan for PET Imaging of IDO-Mediated Kynurenine Pathway of Tryptophan Metabolism. Mol Imaging Biol: MIB : Off Publ Acad Mol Imaging. 2016; https://doi.org/10.1007/s11307-016-1024-z.
  180. 180.
    Huang X, Xiao X, Gillies RJ, Tian H. Design and automated production of 11C-alpha-methyl-l-tryptophan (11C-AMT). Nucl Med Biol. 2016;43:303–8. https://doi.org/10.1016/j.nucmedbio.2016.02.001.PubMedCrossRefGoogle Scholar
  181. 181.
    Ehlerding EB, England CG, McNeel DG, Cai W. Molecular Imaging of Immunotherapy Targets in Cancer. J Nucl Med: Off Publ Soc Nucl Med. 2016;57:1487–92. https://doi.org/10.2967/jnumed.116.177493.CrossRefGoogle Scholar
  182. 182.
    Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS. Novel Radiotracer for ImmunoPET Imaging of PD-1 Checkpoint Expression on Tumor Infiltrating Lymphocytes. Bioconjug Chem. 2015;26:2062–9. https://doi.org/10.1021/acs.bioconjchem.5b00318.PubMedCrossRefGoogle Scholar
  183. 183.
    Hettich M, Braun F, Bartholoma MD, Schirmbeck R, Niedermann G. High-Resolution PET Imaging with Therapeutic Antibody-based PD-1/PD-L1 Checkpoint Tracers. Theranostics. 2016;6:1629–40. https://doi.org/10.7150/thno.15253.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Nedrow JR, Josefsson A, Park S, Ranka S, Roy S, Sgouros G. Imaging of programmed death ligand-1 (PD-L1): impact of protein concentration on distribution of anti-PD-L1 SPECT agent in an immunocompetent melanoma murine model. J Nucl Med: Off Publ Soc Nucl Med. 2017; https://doi.org/10.2967/jnumed.117.193268.
  185. 185.
    Sharp PA. Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol. 2003;35:288–91.PubMedCrossRefGoogle Scholar
  186. 186.
    Chakravarty R, Chakraborty S, Dash A. 64Cu2+ Ions as PET Probe: An Emerging Paradigm in Molecular Imaging of Cancer. Mol Pharm. 2016;13:3601–12. https://doi.org/10.1021/acs.molpharmaceut.6b00582.PubMedCrossRefGoogle Scholar
  187. 187.
    Kim KI, Jang SJ, Park JH, Lee YJ, Lee TS, Woo KS, et al. Detection of increased 64Cu uptake by human copper transporter 1 gene overexpression using PET with 64CuCl2 in human breast cancer xenograft model. J Nucl Med: Off Publ Soc Nucl Med. 2014;55:1692–8. https://doi.org/10.2967/jnumed.114.141127.CrossRefGoogle Scholar
  188. 188.
    Peng F, Lu X, Janisse J, Muzik O, Shields AF. PET of human prostate cancer xenografts in mice with increased uptake of 64CuCl2. J Nucl Med: Off Publ Soc Nucl Med. 2006;47:1649–52.Google Scholar
  189. 189.
    Qin C, Liu H, Chen K, Hu X, Ma X, Lan X, et al. Theranostics of malignant melanoma with 64CuCl2. J Nucl Med: Off Publ Soc Nucl Med. 2014;55:812–7. https://doi.org/10.2967/jnumed.113.133850.CrossRefGoogle Scholar
  190. 190.
    Jiang L, Tu Y, Hu X, Bao A, Chen H, Ma X, et al. Pilot Study of 64Cu(I) for PET Imaging of Melanoma. Sci Rep. 2017;7:2574. https://doi.org/10.1038/s41598-017-02691-3.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    England CG, Rui L, Cai W. Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies. Eur J Nucl Med Mol Imaging. 2017;44:517–32. https://doi.org/10.1007/s00259-016-3560-9.PubMedCrossRefGoogle Scholar
  192. 192.
    Jauw YW, Menke-van der Houven van Oordt CW, Hoekstra OS, Hendrikse NH, Vugts DJ, Zijlstra JM, et al. Immuno-Positron Emission Tomography with Zirconium-89-Labeled Monoclonal Antibodies in Oncology: What Can We Learn from Initial Clinical Trials? Front Pharmacol. 2016;7:131. https://doi.org/10.3389/fphar.2016.00131.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Halpern SE, Dillman RO, Witztum KF, Shega JF, Hagan PL, Burrows WM, et al. Radioimmunodetection of melanoma utilizing In-111 96.5 monoclonal antibody: a preliminary report. Radiology. 1985;155:493–9. https://doi.org/10.1148/radiology.155.2.3983401.PubMedCrossRefGoogle Scholar
  194. 194.
    Rosenblum MG, Murray JL, Haynie TP, Glenn HJ, Jahns MF, Benjamin RS, et al. Pharmacokinetics of 111In-labeled anti-p97 monoclonal antibody in patients with metastatic malignant melanoma. Cancer Res. 1985;45:2382–6.PubMedGoogle Scholar
  195. 195.
    Dadachova E, Moadel T, Schweitzer AD, Bryan RA, Zhang T, Mints L, et al. Radiolabeled melanin-binding peptides are safe and effective in treatment of human pigmented melanoma in a mouse model of disease. Cancer Biother Radiopharm. 2006;21:117–29. https://doi.org/10.1089/cbr.2006.21.117.PubMedCrossRefGoogle Scholar
  196. 196.
    Dadachova E, Revskaya E, Sesay MA, Damania H, Boucher R, Sellers RS, et al. Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther. 2008;7:1116–27.PubMedCrossRefGoogle Scholar
  197. 197.
    Dadachova E, Nosanchuk JD, Shi L, Schweitzer AD, Frenkel A, Nosanchuk JS, et al. Dead cells in melanoma tumors provide abundant antigen for targeted delivery of ionizing radioactivity by a mAb to melanin. Proc Natl Acad Sci U S A. 2004;101:14865–70. https://doi.org/10.1073/pnas.0406180101.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Revskaya E, Jongco AM, Sellers RS, Howell RC, Koba W, Guimaraes AJ, et al. Radioimmunotherapy of experimental human metastatic melanoma with melanin-binding antibodies and in combination with dacarbazine. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:2373–9. https://doi.org/10.1158/1078-0432.CCR-08-2376.CrossRefGoogle Scholar
  199. 199.
    Jandl T, Revskaya E, Jiang Z, Bryan RA, Casadevall A, Dadachova E. Complement-dependent cytotoxicity of an antibody to melanin in radioimmunotherapy of metastatic melanoma. Immunotherapy. 2013;5:357–64. https://doi.org/10.2217/imt.13.16.PubMedCrossRefGoogle Scholar
  200. 200.
    Suzuki M, Cheung NK. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets. 2015;19:349–62. https://doi.org/10.1517/14728222.2014.986459.PubMedCrossRefGoogle Scholar
  201. 201.
    Voss SD, Smith SV, DiBartolo N, McIntosh LJ, Cyr EM, Bonab AA, et al. Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A. 2007;104:17489–93. https://doi.org/10.1073/pnas.0708436104.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Dearling JL, Voss SD, Dunning P, Snay E, Fahey F, Smith SV, et al. Imaging cancer using PET--the effect of the bifunctional chelator on the biodistribution of a (64)Cu-labeled antibody. Nucl Med Biol. 2011;38:29–38. https://doi.org/10.1016/j.nucmedbio.2010.07.003.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Vavere AL, Butch ER, Dearling JL, Packard AB, Navid F, Shulkin BL, et al. 64Cu-p-NH2-Bn-DOTA-hu14.18K322A, a PET radiotracer targeting neuroblastoma and melanoma. Journal of nuclear medicine : official publication. Soc Nucl Med. 2012;53:1772–8. https://doi.org/10.2967/jnumed.112.104208.CrossRefGoogle Scholar
  204. 204.
    Herhaus P, Habringer S, Vag T, Steiger K, Slotta-Huspenina J, Gerngross C, et al. Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Res. 2017;7:51. https://doi.org/10.1186/s13550-017-0294-z.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Werner RA, Weich A, Higuchi T, Schmid JS, Schirbel A, Lassmann M, et al. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach. Theranostics. 2017;7:1489–98. https://doi.org/10.7150/thno.18754.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Lapa C, Schreder M, Schirbel A, Samnick S, Kortum KM, Herrmann K, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [18F]FDG and laboratory values. Theranostics. 2017;7:205–12. https://doi.org/10.7150/thno.16576.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Lapa C, Luckerath K, Kleinlein I, Monoranu CM, Linsenmann T, Kessler AF, et al. (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics. 2016;6:428–34. https://doi.org/10.7150/thno.13986.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Derlin T, Jonigk D, Bauersachs J, Bengel FM. Molecular Imaging of Chemokine Receptor CXCR4 in Non-Small Cell Lung Cancer Using 68Ga-Pentixafor PET/CT: Comparison With 18F-FDG. Clin Nucl Med. 2016;41:e204–5. https://doi.org/10.1097/RLU.0000000000001092.PubMedCrossRefGoogle Scholar
  209. 209.
    Liang Z, Zhan W, Zhu A, Yoon Y, Lin S, Sasaki M, et al. Development of a unique small molecule modulator of CXCR4. PLoS One. 2012;7:e34038. https://doi.org/10.1371/journal.pone.0034038.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner FP, et al. First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. J Nucl Med: Off Publ Soc Nucl Med. 2016;57:741–6. https://doi.org/10.2967/jnumed.115.161034.CrossRefGoogle Scholar
  211. 211.
    Norain A, Dadachova E. Targeted Radionuclide Therapy of Melanoma. Semin Nucl Med. 2016;46:250–9. https://doi.org/10.1053/j.semnuclmed.2015.12.005.PubMedCrossRefGoogle Scholar
  212. 212.
    Kam BL, Teunissen JJ, Krenning EP, de Herder WW, Khan S, van Vliet EI, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S103–12. https://doi.org/10.1007/s00259-011-2039-y.PubMedCrossRefGoogle Scholar
  213. 213.
    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376:125–35. https://doi.org/10.1056/NEJMoa1607427.PubMedCrossRefGoogle Scholar
  214. 214.
    Horsch D, Ezziddin S, Haug A, Gratz KF, Dunkelmann S, Miederer M, et al. Effectiveness and side-effects of peptide receptor radionuclide therapy for neuroendocrine neoplasms in Germany: A multi-institutional registry study with prospective follow-up. Eur J Cancer. 2016;58:41–51. https://doi.org/10.1016/j.ejca.2016.01.009.PubMedCrossRefGoogle Scholar
  215. 215.
    Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153:13–9. https://doi.org/10.1093/jb/mvs136.PubMedCrossRefGoogle Scholar
  216. 216.
    Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15:385–403. https://doi.org/10.1038/nrd.2015.17.PubMedCrossRefGoogle Scholar
  217. 217.
    Camacho X, Calzada V, Fernandez M, Alonso O, Chammas R, Riva E, et al. 177Lu-DOTA-Bevacizumab: Radioimmunotherapy agent for melanoma. Curr Radiopharm. 2016.Google Scholar
  218. 218.
    Guo H, Miao Y. Melanoma targeting property of a Lu-177-labeled lactam bridge-cyclized alpha-MSH peptide. Bioorg Med Chem Lett. 2013;23:2319–23. https://doi.org/10.1016/j.bmcl.2013.02.069.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Joyal JL, Barrett JA, Marquis JC, Chen J, Hillier SM, Maresca KP, et al. Preclinical evaluation of an 131I-labeled benzamide for targeted radiotherapy of metastatic melanoma. Cancer Res. 2010;70:4045–53. https://doi.org/10.1158/0008-5472.CAN-09-4414.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Bonnet M, Mishellany F, Papon J, Cayre A, Penault-Llorca F, Madelmont JC, et al. Anti-melanoma efficacy of internal radionuclide therapy in relation to melanin target distribution. Pigment Cell Melanoma Res. 2010;23:e1–11. https://doi.org/10.1111/j.1755-148X.2010.00716.x.PubMedCrossRefGoogle Scholar
  221. 221.
    Viallard C, Perrot Y, Boudhraa Z, Jouberton E, Miot-Noirault E, Bonnet M, et al. [(1)(2)(3)I]ICF01012 melanoma imaging and [(1)(3)(1)I]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models. Eur J Dermatol: EJD. 2015;25:29–35. https://doi.org/10.1684/ejd.2014.2481.PubMedGoogle Scholar
  222. 222.
    Mier W, Kratochwil C, Hassel JC, Giesel FL, Beijer B, Babich JW, et al. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J Nucl Med: Off Publ Soc Nucl Med. 2014;55:9–14. https://doi.org/10.2967/jnumed.112.112789.CrossRefGoogle Scholar
  223. 223.
    Viallard C, Chezal JM, Mishellany F, Ranchon-Cole I, Pereira B, Herbette A, et al. Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget. 2016;7:12927–36. 10.18632/oncotarget.7340.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Maisonial A, Kuhnast B, Papon J, Boisgard R, Bayle M, Vidal A, et al. Single photon emission computed tomography/positron emission tomography imaging and targeted radionuclide therapy of melanoma: new multimodal fluorinated and iodinated radiotracers. J Med Chem. 2011;54:2745–66. https://doi.org/10.1021/jm101574q.PubMedCrossRefGoogle Scholar
  225. 225.
    Maisonial A, Billaud EM, Besse S, Rbah-Vidal L, Papon J, Audin L, et al. Synthesis, radioiodination and in vivo screening of novel potent iodinated and fluorinated radiotracers as melanoma imaging and therapeutic probes. Eur J Med Chem. 2013;63:840–53. https://doi.org/10.1016/j.ejmech.2012.11.047.PubMedCrossRefGoogle Scholar
  226. 226.
    Rbah-Vidal L, Vidal A, Billaud EM, Besse S, Ranchon-Cole I, Mishellany F, et al. Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy. Neoplasia. 2017;19:17–27. https://doi.org/10.1016/j.neo.2016.11.001.PubMedCrossRefGoogle Scholar
  227. 227.
    Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res. 2016;76:6153–8. https://doi.org/10.1158/0008-5472.CAN-16-1260.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Nuclear MedicineShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
  2. 2.Department of RadiologyUniversity of Wisconsin–MadisonMadisonUSA
  3. 3.Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonUSA
  4. 4.Department of Nuclear Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology; Hubei Key Laboratory of Molecular ImagingWuhanChina
  5. 5.University of Wisconsin Carbone Cancer CenterMadisonUSA

Personalised recommendations