New horizons in cardiac innervation imaging: introduction of novel 18F-labeled PET tracers

  • Ryohei Kobayashi
  • Xinyu Chen
  • Rudolf A. Werner
  • Constantin Lapa
  • Mehrbod S. Javadi
  • Takahiro Higuchi
Review Article

Abstract

Cardiac sympathetic nervous activity can be uniquely visualized by non-invasive radionuclide imaging techniques due to the fast growing and widespread application of nuclear cardiology in the last few years. The norepinephrine analogue 123I–meta-iodobenzylguanidine (123I–MIBG) is a single photon emission computed tomography (SPECT) tracer for the clinical implementation of sympathetic nervous imaging for both diagnosis and prognosis of heart failure. Meanwhile, positron emission tomography (PET) imaging has become increasingly attractive because of its higher spatial and temporal resolution compared to SPECT, which allows regional functional and dynamic kinetic analysis. Nevertheless, wider use of cardiac sympathetic nervous PET imaging is still limited mainly due to the demand of costly on-site cyclotrons, which are required for the production of conventional 11C-labeled (radiological half-life, 20 min) PET tracers. Most recently, more promising 18F-labeled (half-life, 110 min) PET radiopharmaceuticals targeting sympathetic nervous system have been introduced. These tracers optimize PET imaging and, by using delivery networks, cost less to produce. In this article, the latest advances of sympathetic nervous imaging using 18F-labeled radiotracers along with their possible applications are reviewed.

Keywords

Heart failure Sympathetic nervous system Nuclear cardiology SPECT PET 18F-labeled radiotracer 

References

  1. 1.
    Zhang DY, Anderson AS. The sympathetic nervous system and heart failure. Cardiol Clin. 2014;32(1):33–45, vii. https://doi.org/10.1016/j.ccl.2013.09.010.CrossRefPubMedGoogle Scholar
  2. 2.
    Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol heart failure study group. N Engl J Med. 1996;334(21):1349–55. https://doi.org/10.1056/nejm199605233342101.CrossRefPubMedGoogle Scholar
  3. 3.
    Lancet. The cardiac insufficiency Bisoprolol study II (CIBIS-II): a randomised trial. Lancet. 1999;353(9146):9–13.CrossRefGoogle Scholar
  4. 4.
    Goldstein S, Hjalmarson A. The mortality effect of metoprolol CR/XL in patients with heart failure: results of the MERIT-HF trial. Clin Cardiol. 1999;22(Suppl 5):V30–5.PubMedGoogle Scholar
  5. 5.
    Wollenweber T, Bengel FM. Cardiac molecular imaging. Semin Nucl Med. 2014;44(5):386–97. https://doi.org/10.1053/j.semnuclmed.2014.05.002.CrossRefPubMedGoogle Scholar
  6. 6.
    Boogers MJ, Fukushima K, Bengel FM, Bax JJ. The role of nuclear imaging in the failing heart: myocardial blood flow, sympathetic innervation, and future applications. Heart Fail Rev. 2011;16(4):411–23. https://doi.org/10.1007/s10741-010-9196-0.CrossRefPubMedGoogle Scholar
  7. 7.
    Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imag. 2010;3(1):92–100. https://doi.org/10.1016/j.jcmg.2009.07.014.CrossRefGoogle Scholar
  8. 8.
    Marwick TH, Raman SV, Carrio I, Bax JJ. Recent developments in heart failure imaging. JACC Cardiovasc Imag. 2010;3(4):429–39. https://doi.org/10.1016/j.jcmg.2010.02.002.CrossRefGoogle Scholar
  9. 9.
    Eckelman WC, Dilsizian V. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease. J Nucl Med : Off Publ, Soc Nucl Med. 2015;56(Suppl 4):7s–10s. https://doi.org/10.2967/jnumed.114.142802.CrossRefGoogle Scholar
  10. 10.
    Flotats A, Carrio I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol : Off Publ Am Soc Nucl Cardiol. 2004;11(5):587–602. https://doi.org/10.1016/j.nuclcard.2004.07.007.CrossRefGoogle Scholar
  11. 11.
    Henderson EB, Kahn JK, Corbett JR, Jansen DE, Pippin JJ, Kulkarni P, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation. 1988;78(5 Pt 1):1192–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med. 2001;42(12):1757–67.PubMedGoogle Scholar
  13. 13.
    Dimitriu-Leen AC, Scholte AJ, Jacobson AF. 123I–MIBG SPECT for Evaluation of Patients with Heart Failure. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56 Suppl 4:25s–30s. doi:https://doi.org/10.2967/jnumed.115.157503.
  14. 14.
    Merlet P, Valette H, Dubois-Rande JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med : Off Publ, Soc Nucl Med. 1992;33(4):471–7.Google Scholar
  15. 15.
    Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29(9):1147–59. https://doi.org/10.1093/eurheartj/ehn113.CrossRefPubMedGoogle Scholar
  16. 16.
    Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Kobayashi H, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol : Off Publ Am Soc Nucl Cardiol. 1998;5(6):579–90.CrossRefGoogle Scholar
  17. 17.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial Iodine-123 meta-Iodobenzylguanidine imaging and cardiac events in heart FailureResults of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol. 2010;55(20):2212–21. https://doi.org/10.1016/j.jacc.2010.01.014.CrossRefPubMedGoogle Scholar
  18. 18.
    Nakajima K, Nakata T, Matsuo S, Jacobson AF. Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure: 2- and 5-year risk models. Eur Heart J Cardiovasc Imag. 2016;17(10):1138–45. https://doi.org/10.1093/ehjci/jev322.CrossRefGoogle Scholar
  19. 19.
    Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53(5):426–35. https://doi.org/10.1016/j.jacc.2008.10.025.CrossRefPubMedGoogle Scholar
  20. 20.
    Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37. https://doi.org/10.1056/NEJMoa043399.CrossRefPubMedGoogle Scholar
  21. 21.
    Kelesidis I, Travin MI. Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Cardiol : Off Publ Am Soc Nucl Cardiol. 2012;19(1):142–152; quiz 53-7. https://doi.org/10.1007/s12350-011-9482-9.CrossRefGoogle Scholar
  22. 22.
    Kawai T, Yamada T, Tamaki S, Morita T, Furukawa Y, Iwasaki Y, et al. Usefulness of cardiac meta-iodobenzylguanidine imaging to identify patients with chronic heart failure and left ventricular ejection fraction <35% at low risk for sudden cardiac death. Am J Cardiol. 2015;115(11):1549–54. https://doi.org/10.1016/j.amjcard.2015.02.058.CrossRefPubMedGoogle Scholar
  23. 23.
    Travin MI. Current clinical applications and next steps for cardiac Innervation imaging. Curr Cardiol Rep. 2017;19(1):1. https://doi.org/10.1007/s11886-017-0817-2.CrossRefPubMedGoogle Scholar
  24. 24.
    Boutagy NE, Sinusas AJ. Recent advances and clinical applications of PET cardiac autonomic nervous system imaging. Curr Cardiol Rep. 2017;19(4):33. https://doi.org/10.1007/s11886-017-0843-0.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lautamaki R, Sasano T, Higuchi T, Nekolla SG, Lardo AC, Holt DP, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med : Off Publ, Soc Nucl Med. 2015;56(3):457–63. https://doi.org/10.2967/jnumed.114.149971.CrossRefGoogle Scholar
  26. 26.
    Bravo PE, Lautamaki R, Carter D, Holt DP, Nekolla SG, Dannals RF, et al. Mechanistic insights into sympathetic neuronal regeneration: multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circ Cardiovasc Imag. 2015;8(8):e003507. https://doi.org/10.1161/circimaging.115.003507.CrossRefGoogle Scholar
  27. 27.
    Boschi S, Lodi F, Boschi L, Nanni C, Chondrogiannis S, Colletti PM, et al. 11C-Meta-hydroxyephedrine: a promising PET radiopharmaceutical for imaging the sympathetic nervous system. Clin Nucl Med. 2015;40(2):e96–e103. https://doi.org/10.1097/rlu.0000000000000512.CrossRefPubMedGoogle Scholar
  28. 28.
    Hall AB, Ziadi MC, Leech JA, Chen SY, Burwash IG, Renaud J, et al. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study. Circulation. 2014;130(11):892–901. https://doi.org/10.1161/circulationaha.113.005893.CrossRefPubMedGoogle Scholar
  29. 29.
    Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9. https://doi.org/10.1016/j.jacc.2013.07.096.CrossRefPubMedGoogle Scholar
  30. 30.
    Fujita W, Matsunari I, Aoki H, Nekolla SG, Kajinami K. Prediction of all-cause death using 11C-hydroxyephedrine positron emission tomography in Japanese patients with left ventricular dysfunction. Ann Nucl Med. 2016; https://doi.org/10.1007/s12149-016-1081-z.
  31. 31.
    Ducharme J, Goertzen AL, Patterson J, Demeter S. Practical aspects of 18F-FDG PET when receiving 18F-FDG from a distant supplier. J Nucl Med Technol. 2009;37(3):164–9. https://doi.org/10.2967/jnmt.109.062950.CrossRefPubMedGoogle Scholar
  32. 32.
    Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imag. 2011;4(4):435–43. https://doi.org/10.1161/CIRCIMAGING.110.962126.CrossRefGoogle Scholar
  33. 33.
    Yu M, Bozek J, Lamoy M, Kagan M, Benites P, Onthank D, et al. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment. Eur J Nucl Med Mol Imaging. 2012;39(12):1910–9. https://doi.org/10.1007/s00259-012-2204-y.CrossRefPubMedGoogle Scholar
  34. 34.
    Higuchi T, Yousefi BH, Reder S, Beschorner M, Laitinen I, Yu M, et al. Myocardial kinetics of a novel [(18)F]-labeled sympathetic nerve PET tracer LMI1195 in the isolated Perfused rabbit heart. JACC Cardiovasc Imag. 2015;8(10):1229–31. https://doi.org/10.1016/j.jcmg.2014.11.013.CrossRefGoogle Scholar
  35. 35.
    Yu M, Bozek J, Kagan M, Guaraldi M, Silva P, Azure M, et al. Cardiac retention of PET neuronal imaging agent LMI1195 in different species: impact of norepinephrine uptake-1 and -2 transporters. Nucl Med Biol. 2013;40(5):682–8. https://doi.org/10.1016/j.nucmedbio.2013.03.003.CrossRefPubMedGoogle Scholar
  36. 36.
    Gaertner FC, Wiedemann T, Yousefi BH, Lee M, Repokis I, Higuchi T, et al. Preclinical evaluation of 18F-LMI1195 for in vivo imaging of pheochromocytoma in the MENX tumor model. J Nucl Med : Off Publ, Soc Nucl Med. 2013;54(12):2111–7. https://doi.org/10.2967/jnumed.113.119966.CrossRefGoogle Scholar
  37. 37.
    Higuchi T, Yousefi BH, Kaiser F, Gartner F, Rischpler C, Reder S, et al. Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med : Off Publ, Soc Nucl Med. 2013;54(7):1142–6. https://doi.org/10.2967/jnumed.112.104232.CrossRefGoogle Scholar
  38. 38.
    Werner RA, Rischpler C, Onthank D, Lapa C, Robinson S, Samnick S, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: comparison with 11C-Hydroxyephedrine and 123I-MIBG. J Nucl Med : Off Publ, Soc Nucl Med. 2015;56(9):1429–33. https://doi.org/10.2967/jnumed.115.158493.CrossRefGoogle Scholar
  39. 39.
    Sinusas AJ, Lazewatsky J, Brunetti J, Heller G, Srivastava A, Liu YH, et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med : Off Publ, Soc Nucl Med. 2014;55(9):1445–51. https://doi.org/10.2967/jnumed.114.140137.CrossRefGoogle Scholar
  40. 40.
    Jang KS, Jung YW, Sherman PS, Quesada CA, Gu G, Raffel DM. Synthesis and bioevaluation of [(18)F]4-fluoro-m-hydroxyphenethylguanidine ([(18)F]4F-MHPG): a novel radiotracer for quantitative PET studies of cardiac sympathetic innervation. Bioorg Med Chem Lett. 2013;23(6):1612–6. https://doi.org/10.1016/j.bmcl.2013.01.106.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jang KS, Jung YW, Gu G, Koeppe RA, Sherman PS, Quesada CA, et al. 4-[18F]Fluoro-m-hydroxyphenethylguanidine: a radiopharmaceutical for quantifying regional cardiac sympathetic nerve density with positron emission tomography. J Med Chem. 2013;56(18):7312–23. https://doi.org/10.1021/jm400770g.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Raffel D, Jung Y-W, Murthy V, Gu G, Rothley J, Koeppe R et al. First-in-human studies of 18F–hydroxyphenethylguanidines: PET radiotracers for quantifying cardiac sympathetic nerve density. Journal of Nuclear Medicine. 2016;57(supplement 2):232.Google Scholar
  43. 43.
    Jung Y-W, Jang KS, Gu G, Koeppe RA, Sherman PS, Quesada CA et al. [18F] Fluoro-Hydroxyphenethylguanidines: Efficient Synthesis and Comparison of Two Structural Isomers as Radiotracers of Cardiac Sympathetic Innervation. ACS Chemical Neuroscience. 2017.Google Scholar
  44. 44.
    Vaidyanathan G, McDougald D, Koumarianou E, Choi J, Hens M, Zalutsky MR. Synthesis and evaluation of 4-[18F]fluoropropoxy-3-iodobenzylguanidine ([18F]FPOIBG): a novel 18F-labeled analogue of MIBG. Nucl Med Biol. 2015;42(8):673–84. https://doi.org/10.1016/j.nucmedbio.2015.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Langer O, Valette H, Dolle F, Halldin C, Loc'h C, Fuseau C, et al. High specific radioactivity (1R,2S)-4-[(18)F]fluorometaraminol: a PET radiotracer for mapping sympathetic nerves of the heart. Nucl Med Biol. 2000;27(3):233–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Langer O, Dolle F, Valette H, Halldin C, Vaufrey F, Fuseau C, et al. Synthesis of high-specific-radioactivity 4- and 6-[18F]fluorometaraminol-PET tracers for the adrenergic nervous system of the heart. Bioorg Med Chem. 2001;9(3):677–94.CrossRefPubMedGoogle Scholar
  47. 47.
    Wieland DM, Rosenspire KC, Hutchins GD, Van Dort M, Rothley JM, Mislankar SG, et al. Neuronal mapping of the heart with 6-[18F]fluorometaraminol. J Med Chem. 1990;33(3):956–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Mislankar SG, Gildersleeve DL, Wieland DM, Massin CC, Mulholland GK, Toorongian SA. 6-[18F]Fluorometaraminol: a radiotracer for in vivo mapping of adrenergic nerves of the heart. J Med Chem. 1988;31(2):362–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Rosenspire KC, Gildersleeve DL, Massin CC, Mislankar SG, Wieland DM. Metabolic fate of the heart agent [18F]6-fluorometaraminol. Int J Rad Appl Instrum B. 1989;16(7):735–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Pissarek M, Ermert J, Oesterreich G, Bier D, Coenen HH. Relative uptake, metabolism, and beta-receptor binding of (1R,2S)-4-(18)F-fluorometaraminol and (123)I-MIBG in normotensive and spontaneously hypertensive rats. J Nucl Med : Off Publ, Soc Nucl Med. 2002;43(3):366–73.Google Scholar
  51. 51.
    Eskola O, Gronroos T, Bergman J, Haaparanta M, Marjamaki P, Lehikoinen P, et al. A novel electrophilic synthesis and evaluation of medium specific radioactivity (1R,2S)-4-[18F]fluorometaraminol, a tracer for the assessment of cardiac sympathetic nerve integrity with PET. Nucl Med Biol. 2004;31(1):103–10.CrossRefPubMedGoogle Scholar
  52. 52.
    Rischpler C, Fukushima K, Isoda T, Javadi MS, Dannals RF, Abraham R, et al. Discrepant uptake of the radiolabeled norepinephrine analogues hydroxyephedrine (HED) and metaiodobenzylguanidine (MIBG) in rat hearts. Eur J Nucl Med Mol Imaging. 2013;40(7):1077–83. https://doi.org/10.1007/s00259-013-2393-z.CrossRefPubMedGoogle Scholar
  53. 53.
    DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med : Off Publ, Soc Nucl Med. 1993;34(8):1287–93.Google Scholar
  54. 54.
    Raffel DM, Jung YW, Gildersleeve DL, Sherman PS, Moskwa JJ, Tluczek LJ, et al. Radiolabeled phenethylguanidines: novel imaging agents for cardiac sympathetic neurons and adrenergic tumors. J Med Chem. 2007;50(9):2078–88. https://doi.org/10.1021/jm061398y.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ryohei Kobayashi
    • 1
    • 2
  • Xinyu Chen
    • 1
    • 3
  • Rudolf A. Werner
    • 1
    • 3
    • 4
  • Constantin Lapa
    • 1
  • Mehrbod S. Javadi
    • 4
  • Takahiro Higuchi
    • 1
    • 3
    • 5
  1. 1.Department of Nuclear MedicineUniversity Hospital of WürzburgWürzburgGermany
  2. 2.Research CentreNihon Medi-Physics Co., Ltd.ChibaJapan
  3. 3.Comprehensive Heart Failure CenterUniversity Hospital of WürzburgWürzburgGermany
  4. 4.The Russell H Morgan Department of Radiology and Radiological SciencesJohns Hopkins School of MedicineBaltimoreUSA
  5. 5.Department of Biomedical Imaging, Research InstituteNational Cerebral and Cardiovascular CenterSuitaJapan

Personalised recommendations