Advertisement

A score combining baseline neutrophilia and primary tumor SUVpeak measured from FDG PET is associated with outcome in locally advanced cervical cancer

  • Antoine Schernberg
  • Sylvain Reuze
  • Fanny Orlhac
  • Irène Buvat
  • Laurent Dercle
  • Roger Sun
  • Elaine Limkin
  • Alexandre Escande
  • Christine Haie-Meder
  • Eric Deutsch
  • Cyrus Chargari
  • Charlotte Robert
Original Article

Abstract

Purpose

We investigated whether a score combining baseline neutrophilia and a PET biomarker could predict outcome in patients with locally advanced cervical cancer (LACC).

Methods

Patients homogeneously treated with definitive chemoradiation plus image-guided adaptive brachytherapy (IGABT) between 2006 and 2013 were analyzed retrospectively. We divided patients into two groups depending on the PET device used: a training set (TS) and a validation set (VS). Primary tumors were semi-automatically delineated on PET images, and 11 radiomics features were calculated (LIFEx software). A PET radiomic index was selected using the time-dependent area under the curve (td-AUC) for 3-year local control (LC). We defined the neutrophil SUV grade (NSG = 0, 1 or 2) score as the number of risk factors among (i) neutrophilia (neutrophil count >7 G/L) and (ii) high risk defined from the PET radiomic index. The NSG prognostic value was evaluated for LC and overall survival (OS).

Results

Data from 108 patients were analyzed. Estimated 3-year LC was 72% in the TS (n = 69) and 65% in the VS (n = 39). In the TS, SUVpeak was selected as the most LC-predictive biomarker (td-AUC = 0.75), and was independent from neutrophilia (p = 0.119). Neutrophilia (HR = 2.6), high-risk SUVpeak (SUVpeak > 10, HR = 4.4) and NSG = 2 (HR = 9.2) were associated with low probability of LC in TS. In multivariate analysis, NSG = 2 was independently associated with low probability of LC (HR = 7.5, p < 0.001) and OS (HR = 5.8, p = 0.001) in the TS. Results obtained in the VS (HR = 5.2 for OS and 3.5 for LC, p < 0.02) were promising.

Conclusion

This innovative scoring approach combining baseline neutrophilia and a PET biomarker provides an independent prognostic factor to consider for further clinical investigations.

Keywords

Cervical carcinoma Brachytherapy Radiomics Prognostic factor Biomarkers Neutrophilia 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required (retrospective study).

Supplementary material

259_2017_3824_MOESM1_ESM.docx (229 kb)
ESM 1 (DOCX 228 kb)

References

  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers D, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon Fr. Int. Agency Res. Cancer [Internet]. 2013. Available from: http://globocan.iarc.fr
  2. 2.
    Lim MC, Moon E-K, Shin A, Jung K-W, Won Y-J, Seo SS, et al. Incidence of cervical, endometrial, and ovarian cancer in Korea, 1999-2010. J Gynecol Oncol. 2013;24(4):298–302.  https://doi.org/10.3802/jgo.2013.24.4.298.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Narayan K, Fisher RJ, Bernshaw D, Shakher R, Hicks RJ. Patterns of failure and prognostic factor analyses in locally advanced cervical cancer patients staged by positron emission tomography and treated with curative intent. Int. J Gynecol Cancer. 2009;19:912–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Herrera FG, Breuneval T, Prior JO, Bourhis J, Ozsahin M. [18F]FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy. Radiat Oncol. 2016;11(1):43.  https://doi.org/10.1186/s13014-016-0614-x.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Herrera FG, Prior JO. The role of PET/CT in cervical cancer. Front Oncol. 2013;3:34.  https://doi.org/10.3389/fonc.2013.00034.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xue F, Lin LL, Dehdashti F, Miller TR, Siegel BA, Grigsby PW. F-18 fluorodeoxyglucose uptake in primary cervical cancer as an indicator of prognosis after radiation therapy. Gynecol Oncol. 2006;101:147–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Escande A, Haie-Meder C, Maroun P, Gouy S, Mazeron R, Leroy T, et al. Neutrophilia in locally advanced cervical cancer: a novel biomarker for image-guided adaptive brachytherapy? Oncotarget. 2016;7(46):74886–94.  https://doi.org/10.18632/oncotarget.12440.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mabuchi S, Matsumoto Y, Isohashi F, Yoshioka Y, Ohashi H, Morii E, et al. Pretreatment leukocytosis is an indicator of poor prognosis in patients with cervical cancer. Gynecol Oncol. 2011;122:25–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Cho Y, Kim KH, Yoon HI, Kim GE, Kim YB. Tumor-related leukocytosis is associated with poor radiation response and clinical outcome in uterine cervical cancer patients. Ann Oncol. 2016;27(11):2067–74.  https://doi.org/10.1093/annonc/mdw308.CrossRefPubMedGoogle Scholar
  11. 11.
    Mazeron R, Castelnau-Marchand P, Dumas I, del Campo ER, Kom LK, Martinetti F, et al. Impact of treatment time and dose escalation on local control in locally advanced cervical cancer treated by chemoradiation and image-guided pulsed-dose rate adaptive brachytherapy. Radiother Oncol. 2015;114:257–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Pötter R, Dimopoulos J, Georg P, Lang S, Waldhäusl C, Wachter-Gerstner N, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83:148–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Schmid MP, Franckena M, Kirchheiner K, Sturdza A, Georg P, Dörr W, et al. Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy. Gynecol Oncol. 2014;133:256–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim SM, Choi HS, Byun JS. Overall 5-year survival rate and prognostic factors in patients with stage IB and IIA cervical cancer treated by radical hysterectomy and pelvic lymph node dissection. Int J Gynecol Cancer. 2000;10:305–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278(2).  https://doi.org/10.1148/radiol.2015151169.
  16. 16.
    Magné N, Chargari C, SanFilippo N, Messai T, Gerbaulet A, Haie-Meder C. Technical aspects and perspectives of the vaginal mold applicator for brachytherapy of gynecologic malignancies. Brachytherapy. 2010;9:274–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Chargari C, Magné N, Dumas I, Messai T, Vicenzi L, Gillion N, et al. Physics contributions and clinical outcome with 3D-MRI–based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Radiat Oncol. 2009;74:133–9.CrossRefGoogle Scholar
  18. 18.
    Mazeron R, Gilmore J, Dumas I, Champoudry J, Goulart J, Vanneste B, et al. Adaptive 3D image-guided brachytherapy: a strong argument in the debate on systematic radical hysterectomy for locally advanced cervical cancer. Oncologist. 2013;18:415–22.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reuze S, Orlhac F, Nioche C, Chargari C, Buvat I, Deutsch E, et al. Prediction of cervical cancer recurrence using textural features calculated from 18F–FDG PET images [Internet]. J Nucl Med. 2016;57 supplement 2:422. Available from: http://jnm.snmjournals.org/content/57/supplement_2/422.
  20. 20.
    Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET∕CT Discovery-690. Med Phys. 2011;38:5394–411.CrossRefPubMedGoogle Scholar
  21. 21.
    Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodéré F, Ansquer C, et al. Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One. 2016;11(7):e0159984.  https://doi.org/10.1371/journal.pone.0159984.
  22. 22.
    Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med. 2016;58(3):387–92.  https://doi.org/10.2967/jnumed.116.181859.CrossRefPubMedGoogle Scholar
  23. 23.
    Nioche C, Orlhac F, Soussan M, Boughdad S, Alberini J, Buvat I. A software for characterizing intra-tumor heterogeneity in multimodality imaging and establishing reference charts. Eur J Nucl Med Mol Imaging. 2016;43:S156–7.Google Scholar
  24. 24.
    Buvat I, Orlhac F, Soussan M. Tumor texture analysis in PET: where do we stand? J Nucl Med. 2015;56:1642–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I. 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. 2015;10:e0145063.Google Scholar
  26. 26.
    Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55(3):414–22.  https://doi.org/10.2967/jnumed.113.129858.CrossRefPubMedGoogle Scholar
  27. 27.
    Schernberg A, Escande A, Rivin Del Campo E, Ducreux M, Nguyen F, Goere D, et al. Leukocytosis and neutrophilia predicts outcome in anal cancer. Radiother Oncol. 2016;122(1):137–45.  https://doi.org/10.1016/j.radonc.2016.12.009.CrossRefPubMedGoogle Scholar
  28. 28.
    Aerts HJWL. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2(12):1636–42.  https://doi.org/10.1001/jamaoncol.2016.2631.CrossRefPubMedGoogle Scholar
  29. 29.
    Andreassen CN, Schack LMH, Laursen LV, Alsner J. Radiogenomics – current status, challenges and future directions. Cancer Lett. 2016;382:127–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Ho K-C, Fang Y-HD, Chung H-W, Yen T-C, Ho T-Y, Chou H-H, et al. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl Med Mol Imaging. 2016;6:166–75.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Barwick TD, Taylor A, Rockall A. Functional imaging to predict tumor response in locally advanced cervical cancer. Curr Oncol Rep. 2013;15:549–58.CrossRefPubMedGoogle Scholar
  32. 32.
    Leseur J, Roman-Jimenez G, Devillers A, Ospina-Arango JD, Williaume D, Castelli J, et al. Pre- and per-treatment 18F-FDG PET/CT parameters to predict recurrence and survival in cervical cancer. Radiother Oncol. 2016;120:512–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Pan L, Cheng J, Zhou M, Yao Z, Zhang Y. The SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) and serum squamous cell carcinoma antigen (SCC-ag) function as prognostic biomarkers in patients with primary cervical cancer. J Cancer Res Clin Oncol. 2012;138:239–46.CrossRefPubMedGoogle Scholar
  34. 34.
    Kidd EA, El Naqa I, Siegel BA, Dehdashti F, Grigsby PW. FDG-PET-based prognostic nomograms for locally advanced cervical cancer. Gynecol Oncol. 2012;127:136–40.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hong JH, Min KJ, Lee JK, So KA, Jung US, Kim S, et al. Prognostic value of the sum of metabolic tumor volume of primary tumor and lymph nodes using 18F-FDG PET/CT in patients with cervical cancer. Medicine (Baltimore). 2016;95:e2992.CrossRefGoogle Scholar
  36. 36.
    Mu W, Chen Z, Liang Y, Shen W, Yang F, Dai R, et al. Staging of cervical cancer based on tumor heterogeneity characterized by texture features on 18 F-FDG PET images. Phys Med Biol. 2015;60:5123–39.CrossRefPubMedGoogle Scholar
  37. 37.
    Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.CrossRefPubMedGoogle Scholar
  38. 38.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431–46.CrossRefPubMedGoogle Scholar
  40. 40.
    Wu J, Chen M, Liang C, Su W. Prognostic value of the pretreatment neutrophil-to-lymphocyte ratio in cervical cancer: a meta-analysis and systematic review. Oncotarget. 2017;8(8):13400–12.  https://doi.org/10.18632/oncotarget.14541.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Gregory AD, McGarry HA. Tumor-associated Neutrophils: new targets for cancer therapy. Cancer Res. 2011;71:2411–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Antoine Schernberg
    • 1
    • 2
  • Sylvain Reuze
    • 1
    • 2
    • 3
    • 4
  • Fanny Orlhac
    • 2
    • 5
  • Irène Buvat
    • 5
  • Laurent Dercle
    • 6
    • 7
  • Roger Sun
    • 1
    • 2
  • Elaine Limkin
    • 2
    • 3
  • Alexandre Escande
    • 1
  • Christine Haie-Meder
    • 1
  • Eric Deutsch
    • 1
    • 2
    • 3
  • Cyrus Chargari
    • 1
    • 2
  • Charlotte Robert
    • 1
    • 2
    • 3
    • 4
  1. 1.Radiation Oncology DepartmentGustave Roussy Cancer CampusVillejuifFrance
  2. 2.INSERM, U1030VillejuifFrance
  3. 3.Univ Paris SudUniversité Paris-SaclayLe Kremlin-BicêtreFrance
  4. 4.Department of Medical PhysicsGustave Roussy, Université Paris-SaclayVillejuifFrance
  5. 5.IMIV, CEA, Inserm, CNRS, Univ. Paris-SudUniversité Paris-Saclay, CEA-SHFJOrsayFrance
  6. 6.Department of Nuclear Medicine and Endocrine OncologyGustave Roussy, Université Paris-SaclayVillejuifFrance
  7. 7.INSERM, U1015VillejuifFrance

Personalised recommendations