Clinical impact of PSMA-based 18F–DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy

  • Esther Mena
  • Maria L. Lindenberg
  • Joanna H. Shih
  • Stephen Adler
  • Stephanie Harmon
  • Ethan Bergvall
  • Deborah Citrin
  • William Dahut
  • Anita T. Ton
  • Yolanda McKinney
  • Juanita Weaver
  • Philip Eclarinal
  • Alicia Forest
  • George Afari
  • Sibaprasad Bhattacharyya
  • Ronnie C. Mease
  • Maria J. Merino
  • Peter Pinto
  • Bradford J. Wood
  • Paula Jacobs
  • Martin G. Pomper
  • Peter L. Choyke
  • Baris Turkbey
Original Article

Abstract

Purpose

The purpose of our study was to assess 18F–DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment.

Methods

This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18F–DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18F–DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18F–DCFBC PET/CT on clinical management and treatment decisions was established after 6 months’ patient clinical follow-up.

Results

Forty-one patients (60.3%) showed at least one positive 18F–DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18F–DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18F–DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18F–DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18F–DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients.

Conclusions

18F–DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but results are dependent on PSA levels. Above a threshold PSA value of 0.78 ng/mL, 18F–DCFBC was able to identify recurrence with high reliability. Positive 18F–DCFBC PET imaging led clinicians to change treatment strategy in 51.2% of patients.

Keywords

18F-DCFBC PSMA Prostate cancer Biochemical recurrence PSMA-based PET imaging 

Notes

Compliance with ethical standards

Conflict of interest

Authors have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

259_2017_3818_MOESM1_ESM.doc (80 kb)
ESM 1(DOC 79 kb)

References

  1. 1.
    Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59(4):572–83.CrossRefPubMedGoogle Scholar
  2. 2.
    Pfister D, Bolla M, Briganti A, Carroll P, Cozzarini C, Joniau S, et al. Early salvage radiotherapy following radical prostatectomy. Eur Urol. 2014;65(6):1034–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Briganti A, Karnes RJ, Gandaglia G, Spahn M, Gontero P, Tosco L, et al. Natural history of surgically treated high-risk prostate cancer. Urol Oncol. 2015;33(4):163 e7–13.CrossRefGoogle Scholar
  4. 4.
    Punnen S, Cooperberg MR, D'Amico AV, Karakiewicz PI, Moul JW, Scher HI, et al. Management of biochemical recurrence after primary treatment of prostate cancer: a systematic review of the literature. Eur Urol. 2013;64(6):905–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294(4):433–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Choueiri TK, Dreicer R, Paciorek A, Carroll PR, Konety B. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J Urol. 2008;179(3):906–10. discussion 10CrossRefPubMedGoogle Scholar
  7. 7.
    Rouviere O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol. 2010;20(5):1254–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Novo JF, Lopez SP, Aguilo FL, Miranda EF. Diagnostic methodology for the biochemical recurrence of prostate cancer after brachytherapy. Arch Esp Urol. 2006;59(10):1063–7.PubMedGoogle Scholar
  9. 9.
    Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82(11):2256–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Rowe SP, Gorin MA, Allaf ME, Pienta KJ, Tran PT, Pomper MG, et al. PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges. Prostate Cancer Prostatic Dis. 2016;19(3):223–30.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. (1)(8)F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2015;56(7):1003–10.CrossRefGoogle Scholar
  12. 12.
    Rowe SP, Macura KJ, Ciarallo A, Mena E, Blackford A, Nadal R, et al. Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naive and castration-resistant metastatic prostate cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2016;57(1):46–53.CrossRefGoogle Scholar
  13. 13.
    Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2012;53(12):1883–91.CrossRefGoogle Scholar
  14. 14.
    Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nuclear Med Off Publ Soc Nuclear Med. 2007;48(3):471–80.Google Scholar
  15. 15.
    Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14(10):3036–43.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection--histopathologic correlation. Radiology. 2010;255(1):89–99.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Choo R. Salvage radiotherapy for patients with PSA relapse following radical prostatectomy: issues and challenges. Cancer Res Treat. 2010;42(1):1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ceci F, Uprimny C, Nilica B, Geraldo L, Kendler D, Kroiss A, et al. (68)Ga-PSMA PET/CT for restaging recurrent prostate cancer: which factors are associated with PET/CT detection rate? Eur J Nucl Med Mol Imaging. 2015;42(8):1284–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197–209.CrossRefPubMedGoogle Scholar
  21. 21.
    Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid (6)(8)Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nuclear Med Off Publ Soc Nuclear Med. 2015;56(5):668–74.Google Scholar
  22. 22.
    Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):11–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Einspieler I, Rauscher I, Duwel C, Kronke M, Rischpler C, Habl G, et al. Detection efficacy of hybrid 68Ga-PSMA ligand PET/CT in prostate cancer patients with biochemical recurrence after primary radiation therapy defined by Phoenix criteria. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2017.Google Scholar
  24. 24.
    Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17(4):565–74.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomacker K, et al. Comparison of [(18)F]DCFPyL and [ (68)Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17(4):575–84.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Albisinni S, Artigas C, Aoun F, Biaou I, Grosman J, Gil T, et al. Clinical impact of 68 Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) in patients with prostate cancer with rising prostate-specific antigen after treatment with curative intent: preliminary analysis of a multidisciplinary approach. BJU Int. 2016.Google Scholar
  27. 27.
    Sterzing F, Kratochwil C, Fiedler H, Katayama S, Habl G, Kopka K, et al. (68)Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2016;43(1):34–41.CrossRefPubMedGoogle Scholar

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  • Esther Mena
    • 1
  • Maria L. Lindenberg
    • 1
  • Joanna H. Shih
    • 2
  • Stephen Adler
    • 3
  • Stephanie Harmon
    • 3
  • Ethan Bergvall
    • 1
  • Deborah Citrin
    • 4
  • William Dahut
    • 5
  • Anita T. Ton
    • 1
  • Yolanda McKinney
    • 1
  • Juanita Weaver
    • 3
  • Philip Eclarinal
    • 1
  • Alicia Forest
    • 3
  • George Afari
    • 6
  • Sibaprasad Bhattacharyya
    • 6
  • Ronnie C. Mease
    • 7
  • Maria J. Merino
    • 8
  • Peter Pinto
    • 9
  • Bradford J. Wood
    • 10
  • Paula Jacobs
    • 11
  • Martin G. Pomper
    • 7
  • Peter L. Choyke
    • 1
  • Baris Turkbey
    • 1
  1. 1.Molecular Imaging Program, National Cancer Institute, NIHBethesdaUSA
  2. 2.Division of Cancer treatment and Diagnosis: Biometric Research ProgramNational Cancer Institute, NIHBethesdaUSA
  3. 3.Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc.National Cancer Institute, Campus at FrederickFrederickUSA
  4. 4.Radiation Oncology Branch, Center for Cancer Research. National Cancer Institute, NIHBethesdaUSA
  5. 5.Genitourinary Malignancies BranchNational Cancer Institute, NIHBethesdaUSA
  6. 6.Frederick National Laboratory for Cancer ResearchLeidos Biomedical ResearchFrederickUSA
  7. 7.Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  8. 8.Laboratory of Pathology, NCI, NIHBethesdaUSA
  9. 9.Urologic Oncology BranchNational Cancer Institute, NIHBethesdaUSA
  10. 10.Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical CenterNational Cancer Institute, NIHBethesdaUSA
  11. 11.Cancer Imaging ProgramNational Cancer Institute, NIHRockvilleUSA

Personalised recommendations