Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody

  • Emily B. Ehlerding
  • Saige Lacognata
  • Dawei Jiang
  • Carolina A. Ferreira
  • Shreya Goel
  • Reinier Hernandez
  • Justin J. Jeffery
  • Charles P. Theuer
  • Weibo CaiEmail author
Original Article



Increased angiogenesis is a marker of aggressiveness in many cancers. Targeted radionuclide therapy of these cancers with angiogenesis-targeting agents may curtail this increased blood vessel formation and slow the growth of tumors, both primary and metastatic. CD105, or endoglin, has a primary role in angiogenesis in a number of cancers, making this a widely applicable target for targeted radioimmunotherapy.


The anti-CD105 antibody, TRC105 (TRACON Pharmaceuticals), was conjugated with DTPA for radiolabeling with 177Lu (t 1/2 6.65 days). Balb/c mice were implanted with 4T1 mammary carcinoma cells, and five study groups were used: 177Lu only, TRC105 only, 177Lu-DTPA-IgG (a nonspecific antibody), 177Lu-DTPA-TRC105 low-dose, and 177Lu-DTPA-TRC105 high-dose. Toxicity of the agent was monitored by body weight measurements and analysis of blood markers. Biodistribution studies of 177Lu-DTPA-TRC105 were also performed at 1 and 7 days after injection. Ex vivo histology studies of various tissues were conducted at 1, 7, and 30 days after injection of high-dose 177Lu-DTPA-TRC105.


Biodistribution studies indicated steady uptake of 177Lu-DTPA-TRC105 in 4T1 tumors between 1 and 7 days after injection (14.3 ± 2.3%ID/g and 11.6 ± 6.1%ID/g, respectively; n = 3) and gradual clearance from other organs. Significant inhibition of tumor growth was observed in the high-dose group, with a corresponding significant increase in survival (p < 0.001, all groups). In most study groups (all except the nonspecific IgG group), the body weights of the mice did not decrease by more than 10%, indicating the safety of the injected agents. Serum alanine transaminase levels remained nearly constant indicating no damage to the liver (a primary clearance organ of the agent), and this was confirmed by ex vivo histological analyses.


177Lu-DTPA-TRC105, when administered at a sufficient dose, is able to curtail tumor growth and provide a significant survival benefit without off-target toxicity. Thus, this targeted agent could be used in combination with other treatment options to slow tumor growth allowing the other agents to be more effective.


Angiogenesis Radioimmunotherapy Lutetium-177 (177Lu) CD105 Endoglin Cancer 


Compliance with ethical standards

Financial support

This work was supported, in part, by the University of Wisconsin – Madison, the National Institutes of Health (NIBIB/NCI 1R01CA169365, 1R01EB021336, P30CA014520, 5T32GM08349, T32GM008505), the National Science Foundation (DGE-1256259) and the American Cancer Society (125246-RSG-13-099-01-CCE).

Conflicts of interest

C.P. Theuer is the CEO of TRACON Pharmaceuticals. No potential conflicts of interest were disclosed by the other authors.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

259_2017_3793_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2104 kb).


  1. 1.
    Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.CrossRefGoogle Scholar
  2. 2.
    Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35 Suppl:S224–S43. doi: 10.1016/j.semcancer.2015.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Burstein HJ, Chen Y-H, Parker LM, Savoie J, Younger J, Kuter I, et al. VEGF as a marker for outcome among advanced breast cancer patients receiving anti-VEGF therapy with bevacizumab and vinorelbine chemotherapy. Clin Cancer Res. 2008;14(23):7871–7. doi: 10.1158/1078-0432.ccr-08-0593.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Choe JH, Overman MJ, Fournier KF, Royal RE, Ohinata A, Rafeeq S, et al. Improved survival with anti-VEGF therapy in the treatment of unresectable appendiceal epithelial neoplasms. Ann Surg Oncol. 2015;22(8):2578–84. doi: 10.1245/s10434-014-4335-9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim BS, Kim SK, Choi SH, Lee S-H, Seol HJ, Nam D-H, et al. Prognostic implication of progression pattern after anti-VEGF bevacizumab treatment for recurrent malignant gliomas. J Neurooncol. 2015;124(1):101–10. doi: 10.1007/s11060-015-1808-z.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lieu CH, Tran H, Jiang Z-Q, Mao M, Overman MJ, Lin E, et al. The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer. PLoS One. 2013;8(10):e77117. doi: 10.1371/journal.pone.0077117.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Carbone C, Moccia T, Zhu C, Paradiso G, Budillon A, Chiao PJ, et al. Anti-VEGF treatment–resistant pancreatic cancers secrete proinflammatory factors that contribute to malignant progression by inducing an EMT cell phenotype. Clin Cancer Res. 2011;17(17):5822–32. doi: 10.1158/1078-0432.ccr-11-1185.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Miyata Y, Sagara Y, Watanabe S-i, Asai A, Matsuo T, Ohba K, et al. CD105 is a more appropriate marker for evaluating angiogenesis in urothelial cancer of the upper urinary tract than CD31 or CD34. Virchows Arch. 2013;463(5):673–9. doi: 10.1007/s00428-013-1463-8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu P, Sun YL, Du J, Hou XS, Meng H. CD105/Ki67 coexpression correlates with tumor progression and poor prognosis in epithelial ovarian cancer. Int J Gynecol Cancer. 2012;22(4):586–92. doi: 10.1097/IGC.0b013e31823c36b8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhou L, Yu L, Ding G, Chen W, Zheng S, Cao L. Overexpressions of DLL4 and CD105 are associated with poor prognosis of patients with pancreatic ductal adenocarcinoma. Pathol Oncol Res. 2015;21(4):1141–7. doi: 10.1007/s12253-015-9937-4.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14(7):1931–7. doi: 10.1158/1078-0432.ccr-07-4478.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hong H, Yang Y, Zhang Y, Engle JW, Barnhart TE, Nickles RJ, et al. Positron emission tomography imaging of CD105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging. 2011;38(7):1335–43. doi: 10.1007/s00259-011-1765-5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Figg WD, et al. A phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res. 2012;18(17):4820–9. doi: 10.1158/1078-0432.ccr-12-0098.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Apolo AB, Karzai FH, Trepel JB, Alarcon S, Lee S, Lee M-J, et al. A phase II clinical trial of TRC105 (anti-Endoglin antibody) in adults with advanced/metastatic urothelial carcinoma. Clin Genitourin Cancer. 2017;15(1):77–85. doi: 10.1016/j.clgc.2016.05.010.CrossRefGoogle Scholar
  15. 15.
    Duffy AG, Ulahannan SV, Cao L, Rahma OE, Makarova-Rusher OV, Kleiner DE, et al. A phase II study of TRC105 in patients with hepatocellular carcinoma who have progressed on sorafenib. United European Gastroenterol J. 2015;3(5):453–61. doi: 10.1177/2050640615583587.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gordon MS, Robert F, Matei D, Mendelson DS, Goldman JW, Chiorean EG, et al. An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin Cancer Res. 2014;20(23):5918–26. doi: 10.1158/1078-0432.ccr-14-1143.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Karzai FH, Apolo AB, Cao L, Madan RA, Adelberg DE, Parnes H, et al. A phase I study of TRC105 anti-endoglin (CD105) antibody in metastatic castration-resistant prostate cancer. BJU Int. 2015;116(4):546–55. doi: 10.1111/bju.12986.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gudkov VS, Shilyagina YN, Vodeneev AV, Zvyagin VA. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2016;17(1). doi: 10.3390/ijms17010033.
  19. 19.
    Fahey F, Zukotynski K, Capala J, Knight N; Organizing Committee, Contributors, and Participants of NCI/SNMMI Joint Workshop on Targeted Radionuclide Therapy. Targeted radionuclide therapy: proceedings of a joint workshop hosted by the National Cancer Institute and the Society of Nuclear Medicine and Molecular Imaging. J Nucl Med. 2014;55(2):337–48. doi: 10.2967/jnumed.113.135178.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Salaun P-Y, Bodet-Milin C, Frampas E, Oudoux A, Saï-Maurel C, Faivre-Chauvet A, et al. Toxicity and efficacy of combined radioimmunotherapy and bevacizumab in a mouse model of medullary thyroid carcinoma. Cancer. 2010;116(S4):1053–8. doi: 10.1002/cncr.24792.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li X-F, Kinuya S, Yokoyama K, Koshida K, Mori H, Shiba K, et al. Benefits of combined radioimmunotherapy and anti-angiogenic therapy in a liver metastasis model of human colon cancer cells. Eur J Nucl Med Mol Imaging. 2002;29(12):1669–74. doi: 10.1007/s00259-002-0997-9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee H-J, Yoon C, Park DJ, Kim Y-J, Schmidt B, Lee Y-J, et al. Inhibition of vascular endothelial growth factor A and hypoxia-inducible factor 1α maximizes the effects of radiation in sarcoma mouse models through destruction of tumor vasculature. Int J Radiat Oncol Biol Phys. 2015;91(3):621–30. doi: 10.1016/j.ijrobp.2014.10.047.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee S-Y, Hong Y-D, Pyun M-S, Felipe PM, Choi S-J. Radiolabeling of monoclonal anti-vascular endothelial growth factor receptor 1 (VEGFR 1) with 177Lu for potential use in radioimmunotherapy. Appl Radiat Isot. 2009;67(7-8):1185–9. doi: 10.1016/j.apradiso.2009.02.006.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ashrafi SA, Hosseinimehr SJ, Varmira K, Abedi SM. Radioimmunotherapy with 131I-bevacizumab as a specific molecule for cells with overexpression of the vascular endothelial growth factor. Cancer Biother Radiopharm. 2012;27(7):420–5. doi: 10.1089/cbr.2012.1224.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58(1):162–8.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Hong H, Engle JW, Yang Y, Barnhart TE, Cai W. Positron emission tomography and near-infrared fluorescence imaging of vascular endothelial growth factor with dual-labeled bevacizumab. Am J Nucl Med Mol Imaging. 2012;2(1):1–13.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hong H, Severin GW, Yang Y, Engle JW, Zhang Y, Barnhart TE, et al. Positron emission tomography imaging of CD105 expression with 89Zr-Df-TRC105. Eur J Nucl Med Mol Imaging. 2012;39(1):138–48. doi: 10.1007/s00259-011-1930-x.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sabet A, Biersack H-J, Ezziddin S. Advances in peptide receptor radionuclide therapy. Semin Nucl Med. 2016;46(1):40–6. doi: 10.1053/j.semnuclmed.2015.09.005.
  30. 30.
    Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med. 2016;57(10):1487–92. doi: 10.2967/jnumed.116.177493.
  31. 31.
    Al-Ejeh F, Shi W, Miranda M, Simpson PT, Vargas AC, Song S, et al. Treatment of triple-negative breast cancer using anti-EGFR-directed radioimmunotherapy combined with radiosensitizing chemotherapy and PARP inhibitor. J Nucl Med. 2013;54(6):913–21. doi: 10.2967/jnumed.112.111534.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wagner JY, Schwarz K, Schreiber S, Schmidt B, Wester HJ, Schwaiger M, et al. Myeloablative anti-CD20 radioimmunotherapy +/− high-dose chemotherapy followed by autologous stem cell support for relapsed/refractory B-cell lymphoma results in excellent long-term survival. Oncotarget. 2013;4(6):899–910. doi: 10.18632/oncotarget.1037.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Press OW, Unger JM, Rimsza LM, Friedberg JW, LeBlanc M, Czuczman MS, et al. Phase III randomized intergroup trial of CHOP plus rituximab compared with CHOP chemotherapy plus (131)iodine-tositumomab for previously untreated follicular non-Hodgkin lymphoma: SWOG S0016. J Clin Oncol. 2013;31(3):314–20. doi: 10.1200/JCO.2012.42.4101.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Blakkisrud J, Løndalen A, Martinsen ACT, Dahle J, Holtedahl JE, Bach-Gansmo T, et al. Tumor-absorbed dose for non-Hodgkin lymphoma patients treated with the anti-CD37 antibody radionuclide conjugate 177Lu-lilotomab satetraxetan. J Nucl Med. 2017;58(1):48–54. doi: 10.2967/jnumed.116.173922.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Frost SHL, Frayo SL, Miller BW, Orozco JJ, Booth GC, Hylarides MD, et al. Comparative efficacy of (177)Lu and (90)Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models. PLoS One. 2015;10(3):e0120561. doi: 10.1371/journal.pone.0120561.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang Y, Hong H, Engle JW, Bean J, Yang Y, Leigh BR, et al. Positron emission tomography imaging of CD105 expression with a 64Cu-labeled monoclonal antibody: NOTA is superior to DOTA. PLoS One. 2011;6(12):e28005. doi: 10.1371/journal.pone.0028005.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang Y, Hong H, Orbay H, Valdovinos HF, Nayak TR, Theuer CP, et al. PET imaging of CD105/endoglin expression with a 61/64Cu-labeled Fab antibody fragment. Eur J Nucl Med Mol Imaging. 2013;40(5):759–67. doi: 10.1007/s00259-012-2334-2.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Emily B. Ehlerding
    • 1
  • Saige Lacognata
    • 2
  • Dawei Jiang
    • 2
  • Carolina A. Ferreira
    • 3
  • Shreya Goel
    • 4
  • Reinier Hernandez
    • 1
  • Justin J. Jeffery
    • 5
  • Charles P. Theuer
    • 6
  • Weibo Cai
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Medical PhysicsUniversity of Wisconsin – MadisonMadisonUSA
  2. 2.Department of RadiologyUniversity of Wisconsin – MadisonMadisonUSA
  3. 3.Department of Biomedical EngineeringUniversity of Wisconsin – MadisonMadisonUSA
  4. 4.Department of Materials Science and EngineeringUniversity of Wisconsin – MadisonMadisonUSA
  5. 5.Small Animal Imaging FacilityUniversity of Wisconsin – MadisonMadisonUSA
  6. 6.TRACON Pharmaceuticals, Inc.San DiegoUSA

Personalised recommendations